Advertisement

Oxidation of Metals

, Volume 90, Issue 3–4, pp 401–419 | Cite as

High-Temperature Oxidation Behavior of CrMoV, F91 and Mar-M247 Superalloys Exposed to Laboratory Air at 550 °C

  • Mohammad Hassan Shirani Bidabadi
  • Zheng Yu
  • Abdul Rehman
  • Jian Guo He
  • Chi Zhang
  • Hao Chen
  • Zhi-Gang Yang
Original Paper
  • 63 Downloads

Abstract

The oxidation behavior of three commercial superalloys, CrMoV, F91 and Mar-M247, was studied at 550 °C in laboratory air for 1000 h. Mar-M247 superalloy showed the best oxidation resistance, which is attributed to the formation of a scale rich in Cr2O3 and Al2O3, followed by F91 and CrMoV. A thick duplex oxide formed on CrMoV alloy and spallation was observed. The results for CrMoV alloy showed that calculated Fe diffusion in magnetite was 200 times faster than literature values for Fe diffusion in Fe3O4, which is attributed to grain-boundary diffusion and the effect of impurity on diffusion. F91 initially formed a protective chromium-rich oxide layer followed by formation nodules, leading breakaway oxidation. The oxide nodules consisted of a duplex structure with different morphologies and oxide phases from duplex oxide scale in CrMoV.

Keywords

Low-alloy steel Steel Superalloys Glow discharge optical emission spectroscopy (GDOES) High-temperature corrosion 

Notes

Acknowledgments

This work was supported by Tsinghua University Initiative Scientific Research Program and the National Magnetic Confinement Fusion Energy Research Project of China (2015GB118001). The authors also would like to thank BEIJING SHOUGANG CO., LTD for GDOES analysis.

References

  1. 1.
    T. Kishi, in Materials Outlook for Energy and Environment. New Material Science. 21st Century Towards Solut. Energy Environ. Issues (National Institute for Materials Science (NIMS), Japan, 2008), pp. 37–43.Google Scholar
  2. 2.
    S. Ukai and M. Fujiwara, Journal of Nuclear Materials 307–311, 2002 (749).CrossRefGoogle Scholar
  3. 3.
    W. Christl, A. Rahmel and M. Schütze, Oxidation of Metals 31, 1989 (1).CrossRefGoogle Scholar
  4. 4.
    M. J. Donachie and S. J. Donachie, Superalloys: A Technical Guide, 2nd ed, (ASM International, Materials Park, OH, USA, 2002), pp. 1–9.Google Scholar
  5. 5.
    Y.-N. Chang and F.-I. Wei, Journal of Material Science 24, 1989 (14).CrossRefGoogle Scholar
  6. 6.
    B. Chattopadhyay and G. C. Wood, Oxidation of Metals 2, 1970 (373).CrossRefGoogle Scholar
  7. 7.
    G. O. Liod, British Corrosion Journal 15, 1980 (77).CrossRefGoogle Scholar
  8. 8.
    R. Viswanathan and W. Bakker, Journal of Materials Engineering and Performance 10, 2001 (81).CrossRefGoogle Scholar
  9. 9.
    A. U. Malik, Oxidation of Metals 25, 1985 (233).CrossRefGoogle Scholar
  10. 10.
    T. Ohtani, H. Ogi and M. Hirao, Acta Material 54, 2006 (2705).CrossRefGoogle Scholar
  11. 11.
    C. J. Wang and J. S. Lin, Materials Chemistry and Physics 76, 2002 (123).CrossRefGoogle Scholar
  12. 12.
    B. A. Pint and J. R. Keiser, JOM 67, 2015 (1).CrossRefGoogle Scholar
  13. 13.
    G. L. Dunlop and R. W. K. Honeycombe, Metal Science 10, 1976 (124).CrossRefGoogle Scholar
  14. 14.
    G. Golański, I. Pietryka, J. Słania, S. Mroziński and J. Jasak, Archives of Metallurgy and Materials 61, 2016 (51).CrossRefGoogle Scholar
  15. 15.
    G. Golaĕski and P. Wieczorek, Archives of Foundry Engineering 9, 2009 (97).Google Scholar
  16. 16.
    Z. Yongtao, M. Lede, W. Xiaojun, Z. Hanqian and L. Jinfu, Materials Transactions 50, 2009 (2507).CrossRefGoogle Scholar
  17. 17.
    S. H. Kim, W. S. Ryu and I. H. Kuk, Journal of Korean Nuclear Society 31, 1999 (561).Google Scholar
  18. 18.
    G. H. Meier, K. Jung, N. Mu, N. M. Yanar, F. S. Pettit, J. P. Abellán, T. Olszewski, L. Nieto Hierro, W. J. Quadakkers and G. R. Holcomb, Oxidation of Metals 74, 2010 (319).CrossRefGoogle Scholar
  19. 19.
    Z. J. Wang, F. H. Sun and G. W. Zhao, Advanced Materials Research 53–54, 2008 (397).CrossRefGoogle Scholar
  20. 20.
    T. C. Totemeier, H. Tian and J. A. Simpson, Metallurgical and Materials Transactions A 37, 2006 (1519).CrossRefGoogle Scholar
  21. 21.
    H. Mei, Y. Liu and L. Cheng, Journal of Materials Science 47, 2012 (2278).CrossRefGoogle Scholar
  22. 22.
    A. Szczotok, J. Szala, J. Cwajna and M. Hetmańczyk, Materials Characterization 56, 2006 (348).CrossRefGoogle Scholar
  23. 23.
    D. L. A. de Faria, S. Venâncio Silva and M. T. de Oliveira, Journal of Raman Spectroscopy 28, 1997 (873).CrossRefGoogle Scholar
  24. 24.
    Mineral spectra collected at the Physics Department of the University of Parma, Italy, Mineral Raman DataBase. (n.d.). Retrieved from https://www.fis.unipr.it/phevix/ramandb.php?plot=Magnetite1&submit=Go.
  25. 25.
    L. Liu, Z. G. Yang, C. Zhang, M. Ueda, K. Kawamura and T. Maruyama, Corrosion Science 60, 2012 (90).CrossRefGoogle Scholar
  26. 26.
    F. Rouillard, G. Moine, L. Martinelli and J. C. Ruiz, Oxidation of Metals 77, 2012 (27).CrossRefGoogle Scholar
  27. 27.
    K. F. Mccarty and D. R. Boehme, Journal of Solid State Chemistry 79, 1989 (19).CrossRefGoogle Scholar
  28. 28.
    R. J. Hussey, G. I. Sproule, D. Caplan and M. J. Graham, Oxidation of Metals 11, 1977 (65).CrossRefGoogle Scholar
  29. 29.
    R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 59, 2003 (433).CrossRefGoogle Scholar
  30. 30.
    J. Robertson and M. I. Manning, Materials Science and Technology 4, 1988 (1064).CrossRefGoogle Scholar
  31. 31.
    L. V. Azároff, Journal of Applied Physics 32, 1961 (1658).CrossRefGoogle Scholar
  32. 32.
    M. G. C. Cox, B. McEnaney and V. D. Scott, Nature Physical Science 237, 1972 (140).CrossRefGoogle Scholar
  33. 33.
    M. G. C. Cox, B. Mcenaney and V. D. Scott, Philosophical Magazine 26, 1972 (839).CrossRefGoogle Scholar
  34. 34.
    N. J. Simms and J. A. Little, Oxidation of Metals 27, 1987 (283).CrossRefGoogle Scholar
  35. 35.
    G. C. Allen, J. M. Dyke, S. J. Harris and A. Morris, Oxidation of Metals 29, 1988 (391).CrossRefGoogle Scholar
  36. 36.
    P. J. Harrop, Journal of Materials Science 3, 1968 (206).CrossRefGoogle Scholar
  37. 37.
    P. Kofstad, High Temperature Corrosion, (Elsevier Applied Science, London, 1987), pp. 206–239.Google Scholar
  38. 38.
    D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed, (Chapman & Hall, London, 1992), pp. 60–106.CrossRefGoogle Scholar
  39. 39.
    A. Atkinson, Materials Science and Technology 4, 1988 (1046).CrossRefGoogle Scholar
  40. 40.
    A. Atkinson, Reviews of Modern Physics 57, 1985 (437).CrossRefGoogle Scholar
  41. 41.
    A. Atkinson and W. D. Smart, Journal of the Electrochemical Society 135, 1988 (2886).CrossRefGoogle Scholar
  42. 42.
    H. S. Hsu, Oxidation of Metals 26, 1986 (315).CrossRefGoogle Scholar
  43. 43.
    J. Stringer, Corrosion Science 10, 1970 (513).CrossRefGoogle Scholar
  44. 44.
    H. E. Evans, International Materials Reviews 40, 1995 (1).CrossRefGoogle Scholar
  45. 45.
    J. K. Wright, R. L. Williamson, D. Renusch, B. Veal, M. Grimsditch, P. Y. Hou and R. M. Cannon, Materials Science and Engineering: A 262, 1999 (246).CrossRefGoogle Scholar
  46. 46.
    N. Mu, K. Y. Jung, N. M. Yanar, G. H. Meier, F. S. Pettit and G. R. Holcomb, Oxidation of Metals 78, 2012 (221).CrossRefGoogle Scholar
  47. 47.
    J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser and W. J. Quadakkers, Corrosion Science 48, 2006 (3428).CrossRefGoogle Scholar
  48. 48.
    N. Birks, G. H. Meier, and F. S. Pettit, in Introduction to the High Temperature Oxidation of Metals (Cambridge University Press, New York, 2006), p. 72, 133–144.Google Scholar
  49. 49.
    Y. S. Touloukian, R. K. Kirby, E. R. Taylor and T. Y. R. Lee, Thermophysical Properties of Matter—the TPRC Data Series. Volume 13. Thermal Expansion-Nonmetallic Solids, (Plenum, New York, 1977).Google Scholar
  50. 50.
    Y. S. Touloukian, R. Kirby, R. E. Taylor and P. D. Desai, Thermophysical Properties of Matter—the TPRC Data Series. Volume 12. Thermal Expansion Metallic Elements and Alloys, vol. 12, (Plenum, New York, 1975).Google Scholar
  51. 51.
    L. Z. He, Q. Zheng, X. F. Sun, G. C. Hou, H. R. Guan and Z. Q. Hu, Journal of Materials Science 40, 2005 (2959).CrossRefGoogle Scholar
  52. 52.
    J. Chen, J. H. Lee, C. Y. Jo, S. J. Choe and Y. T. Lee, Materials Science and Engineering: A 247, 1998 (113).CrossRefGoogle Scholar
  53. 53.
    L. R. Liu, T. Jin, N. R. Zhao, X. F. Sun, H. R. Guan and Z. Q. Hu, Materials Science and Engineering: A 361, 2003 (191).CrossRefGoogle Scholar
  54. 54.
    P. Y. Hou, Journal of the American Ceramic Society 86, 2003 (660).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mohammad Hassan Shirani Bidabadi
    • 1
  • Zheng Yu
    • 1
  • Abdul Rehman
    • 1
  • Jian Guo He
    • 1
  • Chi Zhang
    • 1
  • Hao Chen
    • 1
  • Zhi-Gang Yang
    • 1
  1. 1.Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Collaborative Innovation Center of Advanced Nuclear Energy TechnologyTsinghua UniversityBeijingChina

Personalised recommendations