Skip to main content
Log in

High-Temperature Oxidation Behavior of CrMoV, F91 and Mar-M247 Superalloys Exposed to Laboratory Air at 550 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of three commercial superalloys, CrMoV, F91 and Mar-M247, was studied at 550 °C in laboratory air for 1000 h. Mar-M247 superalloy showed the best oxidation resistance, which is attributed to the formation of a scale rich in Cr2O3 and Al2O3, followed by F91 and CrMoV. A thick duplex oxide formed on CrMoV alloy and spallation was observed. The results for CrMoV alloy showed that calculated Fe diffusion in magnetite was 200 times faster than literature values for Fe diffusion in Fe3O4, which is attributed to grain-boundary diffusion and the effect of impurity on diffusion. F91 initially formed a protective chromium-rich oxide layer followed by formation nodules, leading breakaway oxidation. The oxide nodules consisted of a duplex structure with different morphologies and oxide phases from duplex oxide scale in CrMoV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Kishi, in Materials Outlook for Energy and Environment. New Material Science. 21st Century Towards Solut. Energy Environ. Issues (National Institute for Materials Science (NIMS), Japan, 2008), pp. 37–43.

  2. S. Ukai and M. Fujiwara, Journal of Nuclear Materials 307–311, 2002 (749).

    Article  Google Scholar 

  3. W. Christl, A. Rahmel and M. Schütze, Oxidation of Metals 31, 1989 (1).

    Article  Google Scholar 

  4. M. J. Donachie and S. J. Donachie, Superalloys: A Technical Guide, 2nd ed, (ASM International, Materials Park, OH, USA, 2002), pp. 1–9.

    Google Scholar 

  5. Y.-N. Chang and F.-I. Wei, Journal of Material Science 24, 1989 (14).

    Article  Google Scholar 

  6. B. Chattopadhyay and G. C. Wood, Oxidation of Metals 2, 1970 (373).

    Article  Google Scholar 

  7. G. O. Liod, British Corrosion Journal 15, 1980 (77).

    Article  Google Scholar 

  8. R. Viswanathan and W. Bakker, Journal of Materials Engineering and Performance 10, 2001 (81).

    Article  Google Scholar 

  9. A. U. Malik, Oxidation of Metals 25, 1985 (233).

    Article  Google Scholar 

  10. T. Ohtani, H. Ogi and M. Hirao, Acta Material 54, 2006 (2705).

    Article  Google Scholar 

  11. C. J. Wang and J. S. Lin, Materials Chemistry and Physics 76, 2002 (123).

    Article  Google Scholar 

  12. B. A. Pint and J. R. Keiser, JOM 67, 2015 (1).

    Article  Google Scholar 

  13. G. L. Dunlop and R. W. K. Honeycombe, Metal Science 10, 1976 (124).

    Article  Google Scholar 

  14. G. Golański, I. Pietryka, J. Słania, S. Mroziński and J. Jasak, Archives of Metallurgy and Materials 61, 2016 (51).

    Article  Google Scholar 

  15. G. Golaĕski and P. Wieczorek, Archives of Foundry Engineering 9, 2009 (97).

    Google Scholar 

  16. Z. Yongtao, M. Lede, W. Xiaojun, Z. Hanqian and L. Jinfu, Materials Transactions 50, 2009 (2507).

    Article  Google Scholar 

  17. S. H. Kim, W. S. Ryu and I. H. Kuk, Journal of Korean Nuclear Society 31, 1999 (561).

    Google Scholar 

  18. G. H. Meier, K. Jung, N. Mu, N. M. Yanar, F. S. Pettit, J. P. Abellán, T. Olszewski, L. Nieto Hierro, W. J. Quadakkers and G. R. Holcomb, Oxidation of Metals 74, 2010 (319).

    Article  Google Scholar 

  19. Z. J. Wang, F. H. Sun and G. W. Zhao, Advanced Materials Research 53–54, 2008 (397).

    Article  Google Scholar 

  20. T. C. Totemeier, H. Tian and J. A. Simpson, Metallurgical and Materials Transactions A 37, 2006 (1519).

    Article  Google Scholar 

  21. H. Mei, Y. Liu and L. Cheng, Journal of Materials Science 47, 2012 (2278).

    Article  Google Scholar 

  22. A. Szczotok, J. Szala, J. Cwajna and M. Hetmańczyk, Materials Characterization 56, 2006 (348).

    Article  Google Scholar 

  23. D. L. A. de Faria, S. Venâncio Silva and M. T. de Oliveira, Journal of Raman Spectroscopy 28, 1997 (873).

    Article  Google Scholar 

  24. Mineral spectra collected at the Physics Department of the University of Parma, Italy, Mineral Raman DataBase. (n.d.). Retrieved from https://www.fis.unipr.it/phevix/ramandb.php?plot=Magnetite1&submit=Go.

  25. L. Liu, Z. G. Yang, C. Zhang, M. Ueda, K. Kawamura and T. Maruyama, Corrosion Science 60, 2012 (90).

    Article  Google Scholar 

  26. F. Rouillard, G. Moine, L. Martinelli and J. C. Ruiz, Oxidation of Metals 77, 2012 (27).

    Article  Google Scholar 

  27. K. F. Mccarty and D. R. Boehme, Journal of Solid State Chemistry 79, 1989 (19).

    Article  Google Scholar 

  28. R. J. Hussey, G. I. Sproule, D. Caplan and M. J. Graham, Oxidation of Metals 11, 1977 (65).

    Article  Google Scholar 

  29. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 59, 2003 (433).

    Article  Google Scholar 

  30. J. Robertson and M. I. Manning, Materials Science and Technology 4, 1988 (1064).

    Article  Google Scholar 

  31. L. V. Azároff, Journal of Applied Physics 32, 1961 (1658).

    Article  Google Scholar 

  32. M. G. C. Cox, B. McEnaney and V. D. Scott, Nature Physical Science 237, 1972 (140).

    Article  Google Scholar 

  33. M. G. C. Cox, B. Mcenaney and V. D. Scott, Philosophical Magazine 26, 1972 (839).

    Article  Google Scholar 

  34. N. J. Simms and J. A. Little, Oxidation of Metals 27, 1987 (283).

    Article  Google Scholar 

  35. G. C. Allen, J. M. Dyke, S. J. Harris and A. Morris, Oxidation of Metals 29, 1988 (391).

    Article  Google Scholar 

  36. P. J. Harrop, Journal of Materials Science 3, 1968 (206).

    Article  Google Scholar 

  37. P. Kofstad, High Temperature Corrosion, (Elsevier Applied Science, London, 1987), pp. 206–239.

    Google Scholar 

  38. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed, (Chapman & Hall, London, 1992), pp. 60–106.

    Book  Google Scholar 

  39. A. Atkinson, Materials Science and Technology 4, 1988 (1046).

    Article  Google Scholar 

  40. A. Atkinson, Reviews of Modern Physics 57, 1985 (437).

    Article  Google Scholar 

  41. A. Atkinson and W. D. Smart, Journal of the Electrochemical Society 135, 1988 (2886).

    Article  Google Scholar 

  42. H. S. Hsu, Oxidation of Metals 26, 1986 (315).

    Article  Google Scholar 

  43. J. Stringer, Corrosion Science 10, 1970 (513).

    Article  Google Scholar 

  44. H. E. Evans, International Materials Reviews 40, 1995 (1).

    Article  Google Scholar 

  45. J. K. Wright, R. L. Williamson, D. Renusch, B. Veal, M. Grimsditch, P. Y. Hou and R. M. Cannon, Materials Science and Engineering: A 262, 1999 (246).

    Article  Google Scholar 

  46. N. Mu, K. Y. Jung, N. M. Yanar, G. H. Meier, F. S. Pettit and G. R. Holcomb, Oxidation of Metals 78, 2012 (221).

    Article  Google Scholar 

  47. J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser and W. J. Quadakkers, Corrosion Science 48, 2006 (3428).

    Article  Google Scholar 

  48. N. Birks, G. H. Meier, and F. S. Pettit, in Introduction to the High Temperature Oxidation of Metals (Cambridge University Press, New York, 2006), p. 72, 133–144.

  49. Y. S. Touloukian, R. K. Kirby, E. R. Taylor and T. Y. R. Lee, Thermophysical Properties of Matter—the TPRC Data Series. Volume 13. Thermal Expansion-Nonmetallic Solids, (Plenum, New York, 1977).

    Google Scholar 

  50. Y. S. Touloukian, R. Kirby, R. E. Taylor and P. D. Desai, Thermophysical Properties of Matter—the TPRC Data Series. Volume 12. Thermal Expansion Metallic Elements and Alloys, vol. 12, (Plenum, New York, 1975).

    Google Scholar 

  51. L. Z. He, Q. Zheng, X. F. Sun, G. C. Hou, H. R. Guan and Z. Q. Hu, Journal of Materials Science 40, 2005 (2959).

    Article  Google Scholar 

  52. J. Chen, J. H. Lee, C. Y. Jo, S. J. Choe and Y. T. Lee, Materials Science and Engineering: A 247, 1998 (113).

    Article  Google Scholar 

  53. L. R. Liu, T. Jin, N. R. Zhao, X. F. Sun, H. R. Guan and Z. Q. Hu, Materials Science and Engineering: A 361, 2003 (191).

    Article  Google Scholar 

  54. P. Y. Hou, Journal of the American Ceramic Society 86, 2003 (660).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Tsinghua University Initiative Scientific Research Program and the National Magnetic Confinement Fusion Energy Research Project of China (2015GB118001). The authors also would like to thank BEIJING SHOUGANG CO., LTD for GDOES analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Gang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirani Bidabadi, M., Yu, Z., Rehman, A. et al. High-Temperature Oxidation Behavior of CrMoV, F91 and Mar-M247 Superalloys Exposed to Laboratory Air at 550 °C. Oxid Met 90, 401–419 (2018). https://doi.org/10.1007/s11085-018-9839-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-018-9839-4

Keywords

Navigation