Oxidation of Metals

, Volume 89, Issue 1–2, pp 33–48 | Cite as

High-Temperature Oxidation and Pickling Behaviour of HSLA Steels

  • J. L. Gutierrez-Platas
  • A. Artigas
  • A. Monsalve
  • N. A. García-Gómez
  • O. García-Rincón
  • M. De la Garza-Garza
  • F. A. Pérez-González
  • R. Colás
  • N. F. Garza-Montes-de-Oca
Original Paper


The high-temperature oxidation behaviour of three boron-containing HSLA steels was studied at 800 and 900 °C in laboratory still-air conditions. At both temperatures, the oxidation rate of the specimens was in accordance with the parabolic rate law and was sensitive to the silicon content when they were oxidized at 800 °C. The chemical composition of the oxide scale was also influenced by the silicon content of the steel. The mechanical behaviour of the oxide scales formed at the metal–oxide interface was also different at each temperature. Finally, the pickling rate and surface quality of the steels depended on the chemical composition of the oxides that formed.


Low-alloy steel Oxidation kinetics Pickling behaviour Silicon 



The authors would like to thank the Mexican Council for Science and Technology (CONACYT) Project 238232, Universidad Autonoma de Nuevo Leon (UANL), Ternium México, and the Mexican Program for Lecturer Development (PRODEP) for the facilities provided to develop this work.


  1. 1.
    R. G. Davies and C. L. Magee, Journal of Metals 31, 17–23 (1979).Google Scholar
  2. 2.
    E. Lopez-Chipres, I. Mejía, C. Maldonado, A. Bedolla-Jacuinde and J. M. Cabrera, Materials Science and Engineering A 460, 464–470 (2007).CrossRefGoogle Scholar
  3. 3.
    J. Haga, N. Mizui, T. Nagamichi and A. Okamoto, ISIJ International 38, 580–586 (1998).CrossRefGoogle Scholar
  4. 4.
    B. M. Kapadia, Journal of Heat Treating 5, 41–53 (1987).CrossRefGoogle Scholar
  5. 5.
    M. Merklein, J. Lechler and T. Stoehr, International Journal of Mater Forming 2, 259–262 (2009).CrossRefGoogle Scholar
  6. 6.
    J. Hardell, A. Yousfi, M. Lund, L. Pelcastre and B. Prakash, Tribology-Materials, Surfaces & Interfaces 8, 90–97 (2014).CrossRefGoogle Scholar
  7. 7.
    A. Talekar, D. Chandra, R. Chellappa, J. Daemen, N. Tamura and M. Kunz, Corrosion Science 50, 2804–2815 (2008).CrossRefGoogle Scholar
  8. 8.
    O. Kubaschewski and B. Hopkins, Oxidation of metals and alloys, 2nd ed, (Butterworths, London, 1967).Google Scholar
  9. 9.
    N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High Temperature Oxidation of Metals, (Cambridge University Press, Cambridge, 2006).CrossRefGoogle Scholar
  10. 10.
    D. J. Young, High Temperature Oxidation and Corrosion of Metals, vol. 1, (Elsevier, Amsterdam, 2008).Google Scholar
  11. 11.
    A. Atkinson, Corrosion Science 22, 87–102 (1982).CrossRefGoogle Scholar
  12. 12.
    R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 57, 53–79 (2002).CrossRefGoogle Scholar
  13. 13.
    M. Diéz-Ercilla, T. Ros-Yáñez, R. Petrov, Y. Houbaert and R. Colás, Corrosion Engineering Science Technology 39, 295–300 (2004).CrossRefGoogle Scholar
  14. 14.
    M. A. E. Jepson and R. L. Higginson, Corrosion Science 59, 263–269 (2012).CrossRefGoogle Scholar
  15. 15.
    L. Suárez, P. Rodríguez-Calvillo, Y. Houbaert and R. Colás, Corrosion Science 52, 2044–2049 (2010).CrossRefGoogle Scholar
  16. 16.
    A. M. Huntz, V. Bague, G. Beauplé, C. Haut, C. Sévérac, P. Lecour, X. Longaygue and F. Ropital, Applied Surface Science 207, 255–275 (2003).CrossRefGoogle Scholar
  17. 17.
    Y. N. Chang and F. I. Wei, Journal of Materials Science 24, 14–22 (1989).CrossRefGoogle Scholar
  18. 18.
    M. Schütze, Oxidation of Metals 44, 29–61 (1995).CrossRefGoogle Scholar
  19. 19.
    M. Krzyzanowski and J. H. Beynon, Journal of Materials Processing Technology 125, 398–404 (2002).CrossRefGoogle Scholar
  20. 20.
    M. de la Garza, A. Artigas, A. Monsalve and R. Colás, Oxidation of Metals 70, 1–13 (2008).CrossRefGoogle Scholar
  21. 21.
    G. Bamba, Y. Wouters, A. Galerie, F. Charlot and A. Dellali, Acta Materiaila 54, 3917–3922 (2006).CrossRefGoogle Scholar
  22. 22.
    S. R. J. Saunders, H. E. Evans, M. Li, D. D. Gohil and S. Osgerby, Oxidation of Metals 48, 189–200 (1997).CrossRefGoogle Scholar
  23. 23.
    B. Gleeson, S. M. M. Hadavi and D. J. Young, Materials at High Temperatures 17, 311–318 (2000).CrossRefGoogle Scholar
  24. 24.
    S. Yoneda, S. Hayashi, Y. Kondo, H. Tanei and S. Ukai, Oxid. Met. 87, 125–138 (2017).CrossRefGoogle Scholar
  25. 25.
    R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 53, 539–560 (2000).CrossRefGoogle Scholar
  26. 26.
    T. Ishitsuka, Y. Inoue and H. Ogawa, Oxidation of Metals 61, 125–142 (2004).CrossRefGoogle Scholar
  27. 27.
    L. F. Li and J. P. Celis, Canadian Metallurgical Quarterly 42, 365–376 (2003).CrossRefGoogle Scholar
  28. 28.
    L. F. Li, P. Caenen, M. Daerden, D. Vaes, G. Meers, C. Dhondt and J. P. Celis, Corrosion Science 47, 1307–1324 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • J. L. Gutierrez-Platas
    • 1
  • A. Artigas
    • 2
  • A. Monsalve
    • 2
  • N. A. García-Gómez
    • 3
  • O. García-Rincón
    • 4
  • M. De la Garza-Garza
    • 1
  • F. A. Pérez-González
    • 1
  • R. Colás
    • 1
  • N. F. Garza-Montes-de-Oca
    • 1
  1. 1.Facultad de Ingeniería Mecánica y EléctricaUniversidad Autónoma de Nuevo LeónSan Nicolás De Los GarzaMexico
  2. 2.Departamento de MetalurgíaUniversidad de Santiago de ChileSantiagoChile
  3. 3.Facultad de Ciencias QuímicasUniversidad Autónoma de Nuevo LeónSan Nicolás De Los GarzaMexico
  4. 4.Ternium México, S.A. de C.VMonterreyMexico

Personalised recommendations