Advertisement

Oxidation of Metals

, Volume 89, Issue 1–2, pp 183–195 | Cite as

Microstructure, Chemical- and Phase Composition of Sanicro 25 Austenitic Steel After Oxidation in Steam at 700 °C

  • B. Rutkowski
  • A. Gil
  • A. Agüero
  • V. González
  • A. Czyrska-Filemonowicz
Original Paper
  • 169 Downloads

Abstract

Microstructural investigation of Sanicro 25 austenitic steel after steam oxidation at 700 °C for up to 5000 h was conducted using advanced analytical- and high-resolution electron microscopy methods. The study revealed the presence of Cr2O3 plates at the scale surface. Underneath the scale was a chromium-depletion zone that evolved with the oxidation process. In the area that was not affected by oxidation, numerous M23C6, ε-Cu precipitates and some W-rich Laves phase were formed.

Keywords

Sanicro 25 TEM Oxidation Steam 

Notes

Acknowledgements

The study was supported by the AGH-UST Project No. 11.11.110.299. The authors would like to thank Adam Gruszczyński, M.Sc. and Krystyna Płońska-Niżnik (both AGH-UST) for FIB lamellae and conventional sample preparation, respectively. A. Agüero and V. González would like to acknowledge the Spanish Ministry of Economy and Energy for financial support (ENE2014-52359-C3-1-R). The authors also acknowledge KMM-VIN for supporting collaboration between AGH-UST and INTA institutions.

References

  1. 1.
    R. Rautio and S. Bruce, Advanced Materials & Processing 23, 35 (2008).Google Scholar
  2. 2.
    R. Viswanathan, J. F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis and R. Purgert, Journal of Materials Engineering and Performance 22, 2904 (2013).CrossRefGoogle Scholar
  3. 3.
    J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser and W. J. Quadakkers, Corrosion Science 48, 3428 (2006).CrossRefGoogle Scholar
  4. 4.
    E. Essuman, G. H. Meier, J. Żurek, M. Hänsel and W. J. Quadakkers, Oxidation of Metals 69, 143 (2008).CrossRefGoogle Scholar
  5. 5.
  6. 6.
    L. Intiso, L. G. Johansson, S. Canovic, S. Bellini, J. E. Svensson and M. Halvarsson, Oxidation of Metals 77, 209 (2012).CrossRefGoogle Scholar
  7. 7.
    J. Zurek, S.-M. Yang, D.-Y. Lin, T. Hüttel, L. Singheiser and W. J. Quadakkers, Materials and Corrosion 66, 315 (2015).CrossRefGoogle Scholar
  8. 8.
    B. Rutkowski, A. Gil and A. Czyrska-Filemonowicz, Corrosion Science 102, 373 (2016).CrossRefGoogle Scholar
  9. 9.
    B. Rutkowski, A. S. Galanis, A. Gil and A. Czyrska-Filemonowicz, Materials Letters 173, 235 (2016).CrossRefGoogle Scholar
  10. 10.
    V. T. Ha and W. S. Jung, Materials Science and Engineering: A 558, 103 (2012).CrossRefGoogle Scholar
  11. 11.
    R. Rana, W. Bleck, S. B. Singh and O. N. Mohanty, Materials Letters 61, 2919 (2007).CrossRefGoogle Scholar
  12. 12.
    A. Agüero, V. González, M. Gutiérrez and R. Muelas, Surface and Coatings Technology 237, 30 (2013).CrossRefGoogle Scholar
  13. 13.
    P. Stadelmann, http://cime.epfl.ch/ (2015).
  14. 14.
    L. Intiso, L.-G. Johansson, J.-E. Svensson and M. Halvarsson, Oxidation of Metals 83, 367 (2015).CrossRefGoogle Scholar
  15. 15.
    H. Asteman, J.-E. Svensson, M. Norell and L.-G. Johansson, Oxidation of Metals 54, 11 (2000).CrossRefGoogle Scholar
  16. 16.
    F. Liu, J. E. Tang, T. Jonsson, S. Canovic, K. Segerdahl, J. E. Svensson and M. Halvarsson, Oxidation of Metals 66, 295 (2006).CrossRefGoogle Scholar
  17. 17.
    W. J. Quadakkers, J. Piron-Abellan, V. Shemet and L. Singheiser, Materials at High Temperatures 20, 115 (2003).Google Scholar
  18. 18.
    R. E. Lobnig, H. P. Schmidt, K. Hennsen and H. J. Grabke, Oxidation of Metals 37, 81 (1992).CrossRefGoogle Scholar
  19. 19.
    J. H. Shim, E. Kozeschnik, W. S. Jung, S. C. Lee, D. I. Kim, J. Y. Suh, Y. S. Lee and Y. W. Cho, Calphad Computer Coupling of Phase Diagrams and Thermochemistry 34, 105 (2010).CrossRefGoogle Scholar
  20. 20.
    S. Tan, Z.-H. Wang, S. Cheng, Z. Liu, J. Han and W. Fu, Journal of Iron and Steel Research, International 17, 63 (2010).CrossRefGoogle Scholar
  21. 21.
    A. Hernas, M. Staszewski, J. Pasternak, and S. Fudali, in 10th Liege Conference on Materials for Advanced Power Engineering Liege, Belgium (2014), p. 850.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • B. Rutkowski
    • 1
  • A. Gil
    • 2
  • A. Agüero
    • 3
  • V. González
    • 3
  • A. Czyrska-Filemonowicz
    • 1
    • 4
  1. 1.Faculty of Metals Engineering and Industrial Computer ScienceAGH University of Science and TechnologyKrakówPoland
  2. 2.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakówPoland
  3. 3.Instituto Nacional de Técnica Aeroespacial, Departamento de Materiales y EstructurasTorrejón De ArdozSpain
  4. 4.International Centre of Electron Microscopy for Materials Science, AGH University of Science and TechnologyKrakówPoland

Personalised recommendations