Oxidation of Metals

, Volume 89, Issue 1–2, pp 165–182 | Cite as

Effect of Water Density/Pressure on the Corrosion Behavior of 304 and 310 Stainless Steels

Original Paper


Two stainless steels, AISI 304 and 310, are evaluated for their oxidation behavior in low-pressure steam (0.1 MPa), subcritical water (8 MPa) and supercritical water (29 MPa) at 625 °C for 1000 h. The water density is found to have a significant effect on both the weight change per unit surface area, oxide structure and thickness. Under low-pressure steam condition, very little weight change and limited oxide scale formation are observed on both steels while exposure to subcritical water results in excessive oxide formation and weight gain. With further increase in pressure to supercritical condition, a denser oxide layer near the 310 substrate is formed, decreasing the oxidation rate. However, this oxidation decreased is not significant on 304 tested under supercritical condition. No proportional relationship between the oxidation rate and water pressure is observed.


Supercritical water Subcritical water Steam SCWR Weight change Cross section Microstructure SEM 



Funding to the Canada Gen-IV National Program was provided by Natural Resources Canada through the Office of Energy Research and Development, Atomic Energy of Canada Limited and Natural Sciences and Engineering Research Council of Canada (NSERC).


  1. 1.
  2. 2.
    U.S. DOE Nuclear Energy Research Advisory Committee and Gen IV International Forum, A technology roadmap for generation IV nuclear energy systems, December 2002.Google Scholar
  3. 3.
    Gen IV International Forum, GIF Symposium Proceedings 2012 Annual Report, San Diego, California, USA, 14–15 November 2012, Nuclear Energy Agency, Organisation For Economic Co-Operation And Development, 2013.Google Scholar
  4. 4.
    Gen IV International Forum, Introduction to generation IV nuclear energy systems and the international forum, [Online]. Available: www.gen-4.org.
  5. 5.
    M. Naidin, et al. Supercritical water-cooled nuclear reactors (SCWRS) thermodynamic cycle options and thermal aspects of pressure-channel design, IAEA-CN-164-5S03.Google Scholar
  6. 6.
    Evaluation of Fuel Cladding Materials and the Canadian SCWR Concept, Generation-IV Reactor Concepts, CNL Report, 217-127000-ASD-001, Rev. D1, Nov. 2014.Google Scholar
  7. 7.
    W. D. Callister, Materials Science and Engineering an Introduction, Chapter 11, 7th ed, (Wiley, New York, 2007).Google Scholar
  8. 8.
    A. Fry, S. Osgerby, M. Wright, Oxidation of Alloys in Steam Environments—A Review, NPL Report MATC(A)90, http://publications.npl.co.uk/npl_web/pdf/matc90.pdf, September 2002.
  9. 9.
    G. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E. West, T. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren and C. Pister, Journal of Nuclear Materials 371, 176 (2007).CrossRefGoogle Scholar
  10. 10.
    L. Zhang, F. Zhu, Y. Bao and R. Tang, Corrosion Tests of Candidate Fuel Cladding and Reactor Internal Structural Materials, The 2nd Canada-China Joint Workshop on Supercritical Water-Cooled Reactors (CCSC-2010), 2010.Google Scholar
  11. 11.
    Y. Otoguro, M. Sakakibara, T. Saito, H. Ito and Y. Inoue, Transactions ISIJ 28, 761 (1988).CrossRefGoogle Scholar
  12. 12.
    M. Montgomery and A. Karlsson, VGB Kraftwerkstechnik 75, 235 (1995).Google Scholar
  13. 13.
    W. E. Ruther and S. Greenberg, Journal of the Electrochemical Society 111, 1116 (1964).CrossRefGoogle Scholar
  14. 14.
    S. Cisse, L. Laffont, B. Tanguy, M.-C. Lafont and E. Andrieu, Corrosion Science 56, 209 (2012).CrossRefGoogle Scholar
  15. 15.
    W. J. Quadakkers and J. Zurek, in Shreir’s Corrosion, vol. 1, eds. J. A. Richardson, et al. (Elsevier, Amsterdam, 2010), pp. 407–456.CrossRefGoogle Scholar
  16. 16.
    S. J. Saunders, M. Monteiro and F. Rizzo, Progress in Materials Sciences 53, 775 (2008).CrossRefGoogle Scholar
  17. 17.
    J. Robertson, Corrosion Science 32, 443 (1991).CrossRefGoogle Scholar
  18. 18.
    W. Li, X. Huang, J. Li, O. T. Woo, R. Sanchez and C. D. Bibby, JOM 2016. doi: 10.1007/s11837-016-2201-x.Google Scholar
  19. 19.
    P. Kritzer, Journal of Supercritical Fluids 29, 1 (2004).CrossRefGoogle Scholar
  20. 20.
    J. Bischoff, A. T. Motta, C. Eichfeld, R. Comstock, G. Gao and T. Allen, Journal of Nuclear Materials 441, 604 (2013).CrossRefGoogle Scholar
  21. 21.
    M. Warzee, J. Hennaut, M. Maurice, C. Sonnen and J. Waty, Journal of the Electrochemical Society 112, 670 (1965).CrossRefGoogle Scholar
  22. 22.
    I. G. Wright and R. B. Dooley, International Materials Reviews 55, 129 (2010).CrossRefGoogle Scholar
  23. 23.
    T. Dudziak, M. Lukaszewicz, N. Simms and J. Nicholls, Oxidation of Metals 85, 171 (2016).CrossRefGoogle Scholar
  24. 24.
    D. Guzonas, S. Penttilä and W. Cook, Corrosion Science 06, 147 (2016).CrossRefGoogle Scholar
  25. 25.
    W. E. Ruther, R. R. Schlueter, R. H. Lee and R. K. Hart, Corrosion 22, 147 (1966).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Mechanical and Aerospace EngineeringCarleton UniversityOttawaCanada
  2. 2.CanmetMATERIALSHamiltonCanada

Personalised recommendations