Advertisement

Oxidation of Metals

, Volume 89, Issue 1–2, pp 49–60 | Cite as

High-Temperature Oxidation Behavior of SIMP Steel at 800 °C

  • Quanqiang Shi
  • Lingling Zhang
  • Wei Yan
  • Wei Wang
  • Peihua Yin
  • Yiyin Shan
  • Ke Yang
Original Paper

Abstract

In this work, the high-temperature oxidation behavior of SIMP and commercial T91 steels was investigated in air at 800 °C for up to 1008 h. The oxides formed on the two steels were characterized and analyzed by XRD, SEM and EPMA. The results showed that the weight gain and oxide thickness of SIMP steel were rather smaller than those of T91 steel, that flake-like Cr2O3 with Mn1.5Cr1.5O4 spinel particles formed on SIMP steel, while double-layer structure consisting of an outer hematite Fe2O3 layer and an inner Fe–Cr spinel layer formed on T91 steel, and that the location of the oxide layer spallation was at the inner Fe–Cr spinel after 1008 h, which led the ratio between the outer layer and the inner layer to decrease. The reason that SIMP steel exhibited better high-temperature oxidation resistance than that of T91 steel was analyzed due to the higher Cr and Si contents that could form compact and continuous oxide layer on the steel.

Keywords

Ferritic/martensitic steel SIMP steel High-temperature oxidation Oxide scale T91 steel 

Notes

Acknowledgements

This work was financially supported by a sub-project (XDA03010301, XDA03010302) of Advanced Fission Energy Program-ADS Transmutation System, Chinese Academy of Sciences Strategic Priority Research Program (XDA03010000) and Youth Innovation Promotion Association of Chinese Academy of Sciences (2017233) and Innovation Project of Institute of Metal Research (2015-ZD04).

References

  1. 1.
    R. Klueh and A. Nelson, Journal of Nuclear Materials 371, (1), 2007 (37–52).CrossRefGoogle Scholar
  2. 2.
    F. Masuyama, ISIJ International 41, (6), 2001 (612–625).CrossRefGoogle Scholar
  3. 3.
    L. Martinelli and F. Balbaud-Célérier, Materials and Corrosion 62, (6), 2011 (531–542).CrossRefGoogle Scholar
  4. 4.
    C. Schroer and J. Konys, Journal of Engineering for Gas Turbines and Power 132, (8), 2010 (082901).CrossRefGoogle Scholar
  5. 5.
    R. L. Klueh and D. R. Harries, In High-chromium ferritic and martensitic steels for nuclear applications, (ASTM West Conshohocken, PA, 2001).CrossRefGoogle Scholar
  6. 6.
    H. Asteman and M. Spiegel, Corrosion Science 50, (6), 2008 (1734–1743).CrossRefGoogle Scholar
  7. 7.
    M. P. Brady, I. G. Wright and B. Gleeson, JOM 52, (1), 2000 (16–21).Google Scholar
  8. 8.
    E. Airiskallio, E. Nurmi, M. H. Heinonen, I. J. Vayrynen, K. Kokko, M. Ropo, M. P. J. Punkkinen, H. Pitkanen, M. Alatalo, J. Kollar, B. Johansson and L. Vitos, Corrosion Science 52, (10), 2010 (3394–3404).CrossRefGoogle Scholar
  9. 9.
    T. Ishitsuka, Y. Inoue and H. Ogawa, Oxidation of Metals 61, (1–2), 2004 (125–142).CrossRefGoogle Scholar
  10. 10.
    G. H. Meier, K. Jung, N. Mu, N. M. Yanar, F. S. Pettit, J. P. Abellán, T. Olszewski, L. N. Hierro, W. J. Quadakkers and G. R. Holcomb, Oxidation of Metals 74, (5–6), 2010 (319–340).CrossRefGoogle Scholar
  11. 11.
    F. Velasco, A. Bautista and A. González-Centeno, Corrosion Science 51, (1), 2009 (21–27).CrossRefGoogle Scholar
  12. 12.
    D. L. Smith, J. H. Park, I. Lyublinski, V. Evtikhin, A. Perujo, H. Glassbrenner, T. Terai and S. Zinkle, Fusion Engineering and Design 61–62, (02), 2002 (629–641).CrossRefGoogle Scholar
  13. 13.
    E. N’Dah, S. Tsipas, M. P. Hierro and F. J. Pérez, Corrosion Science 49, (10), 2007 (3850–3865).CrossRefGoogle Scholar
  14. 14.
    O. Eliseeva, V. Tsisar, V. Fedirko and Y. S. Matychak, Materials Science 40, (2), 2004 (260–269).CrossRefGoogle Scholar
  15. 15.
    O. I. Eliseeva and V. P. Tsisar, Materials Science 43, (2), 2007 (230–237).CrossRefGoogle Scholar
  16. 16.
    Q. Shi, J. Liu, W. Wang, W. Yan, Y. Shan and K. Yang, Oxidation of Metals 83, (3), 2015 (1–12).Google Scholar
  17. 17.
    L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Bosonnet, G. Picard and G. Santarini, Corrosion Science 50, (9), 2008 (2537–2548).CrossRefGoogle Scholar
  18. 18.
    B A. Pint and I.G. Wright, In The Oxidation Behavior of Fe-Al Alloys, Materials Science Forum, (Trans Tech Publ: 2004), pp. 799–806.Google Scholar
  19. 19.
    R. M. Deacon, J. DuPont, C. Kiely, A. Marder and P. Tortorelli, Oxidation of Metals 72, (1–2), 2009 (87–107).CrossRefGoogle Scholar
  20. 20.
    P. C. Tortorici and M. Dayananda, Materials Science and Engineering: A 244, (2), 1998 (207–215).CrossRefGoogle Scholar
  21. 21.
    S. Liu, D. Tang, H. Wu and L. Wang, Journal of Materials Processing Technology 213, (7), 2013 (1068–1075).CrossRefGoogle Scholar
  22. 22.
    I. Kaur and W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion, (Ziegler Press, Stuttgart, 1988).Google Scholar
  23. 23.
    V. B. Trindade, U. Krupp, B. Z. Hanjari, S. Yang and H.-J. Christ, Materials Research 8, (4), 2005 (371–375).CrossRefGoogle Scholar
  24. 24.
    L. Martinelli, F. Balbaud-Celerier, A. Terlain, S. Bosonnet, G. Picard and G. Santarini, Corrosion Science 50, (9), 2008 (2537–2548).CrossRefGoogle Scholar
  25. 25.
    L. Martinelli, F. Balbaud-Celerier, A. Terlain, S. Delpech, G. Santarini, J. Favergeon, G. Moulin, M. Tabarant and G. Picard, Corrosion Science 50, (9), 2008 (2523–2536).CrossRefGoogle Scholar
  26. 26.
    L. Martinelli, F. Balbaud-Celerier, G. Picard and G. Santarini, Corrosion Science 50, (9), 2008 (2549–2559).CrossRefGoogle Scholar
  27. 27.
    N. Pilling, R. E. Bedworth, The Oxidation of Metals at High Temperatures (1923).Google Scholar
  28. 28.
    T. Mitchell, D. Voss and E. Butler, Journal of Materials Science 17, (6), 1982 (1825–1833).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Quanqiang Shi
    • 1
    • 3
  • Lingling Zhang
    • 1
    • 2
  • Wei Yan
    • 1
    • 3
  • Wei Wang
    • 1
    • 3
  • Peihua Yin
    • 1
    • 3
  • Yiyin Shan
    • 1
    • 3
  • Ke Yang
    • 1
  1. 1.Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations