Oxidation of Metals

, Volume 89, Issue 1–2, pp 141–149 | Cite as

Effect of Dilute Tellurium and Selenium Additions on the High-Temperature Oxidation Resistance of Copper Alloys

Original Paper


The high-temperature oxidation resistance of Cu–Te–Se alloys and Cu–Se alloys at 300, 400, 500 and 600 °C was studied by measuring weight gain per unit area after fixed oxidation times. The morphologies of the oxide scales formed were observed using a scanning electron microscope, with the distribution of element detected by an energy-dispersive spectrometer, and the phases identified using X-ray diffraction. The focus of this study was to understand the effects of tellurium (Te) and selenium (Se) additions on the high-temperature oxidation resistance of copper alloys. At the dilute levels studied (≤0.5 wt% total), these elements underwent internal oxidation. Meanwhile, new phases formed, which made oxidation films more compact and increased the adherence between the oxide film and the alloy matrix, as well as prevented oxygen diffusing in the copper alloy matrix, so the oxidation resistance of copper alloys was improved.


Cu–Te–Se alloy Cu–Se alloy Internal oxidation 



The authors thank the Project (2012BAE06B01-04) supported by the National Science and Technology Pillar Program of China.


  1. 1.
    Y. Liu, S. Shao, K. Liu, X. Yang and D. Lu, Materials Science and Engineering: A 531, 2012 (141–146).CrossRefGoogle Scholar
  2. 2.
    D. E. Mencer, M. A. Hossain, R. Schennach, T. Grady, H. McWhinney, J. A. G. Gomes, M. Kesmez, J. R. Parga, T. L. Barr and D. L. Cocke, Vacuum 77, 2004 (27–35).CrossRefGoogle Scholar
  3. 3.
    Y. Xiao, S. Liu, X. Qu and Y. Jiang, Procedia Engineering 27, 2012 (880–886).CrossRefGoogle Scholar
  4. 4.
    Z. Xie, H. Gao, J. Wang and B. Sun, Materials Science and Engineering: A 529, 2011 (388–392).CrossRefGoogle Scholar
  5. 5.
    Z. Xu, P. Lu and Y. Shu, Engineering Failure Analysis 62, 2016 (199–207).CrossRefGoogle Scholar
  6. 6.
    Y. Ye, X. Yang, J. Wang, X. Zhang, Z. Zhang and T. Sakai, Journal of Alloys and Compounds 615, 2014 (249–254).CrossRefGoogle Scholar
  7. 7.
    S. J. Zinkle, Journal of Nuclear Materials 449, 2014 (277–289).CrossRefGoogle Scholar
  8. 8.
    R. Mahmudi, A. Karsaz, A. Akbari-Fakhrabadi and A. R. Geranmayeh, Materials Science and Engineering: A 527, 2010 (2702–2708).CrossRefGoogle Scholar
  9. 9.
    K. Ngamlerdpokin and N. Tantavichet, International Journal of Hydrogen Energy 39, 2014 (2505–2515).CrossRefGoogle Scholar
  10. 10.
    S.-L. Zhang, J. M. E. Harper and F. M. D’heurle, Journal of Electronic Materials 30, 2001 (207–213).CrossRefGoogle Scholar
  11. 11.
    J.-H. Su, Q.-M. Dong, P. Liu, H.-J. Li and B.-X. Kang, Materials Science and Engineering: A 392, 2005 (422–426).CrossRefGoogle Scholar
  12. 12.
    M. Z. Wei, Z. H. Cao, J. Shi, G. J. Pan, L. J. Xu and X. K. Meng, Materials Science and Engineering: A 646, 2015 (163–168).CrossRefGoogle Scholar
  13. 13.
    G. Plascencia and T. A. Utigard, Corrosion Science 47, 2005 (1149–1163).CrossRefGoogle Scholar
  14. 14.
    H. Y. Song, Q. S. Zhu, Z. G. Wang, J. K. Shang and M. Lu, Materials Science and Engineering: A 527, 2010 (1343–1350).CrossRefGoogle Scholar
  15. 15.
    H.-X. Wang, Y. Zhang, J.-L. Cheng and Y.-S. Li, Transactions of Nonferrous Metals Society of China 25, 2015 (184–190).CrossRefGoogle Scholar
  16. 16.
    Z.-Q. Xiang, Z. Li, Q. Lei, Z. Xiao and Y. Pang, Transactions of Nonferrous Metals Society of China 25, 2015 (444–450).CrossRefGoogle Scholar
  17. 17.
    C.-L. Chuang, J.-N. Aoh and R.-F. Din, Microelectronics Reliability 46, 2006 (449–458).CrossRefGoogle Scholar
  18. 18.
    C. Baratto, R. Kumar, G. Faglia, K. Vojisavljević and B. Malič, Sensors and Actuators B: Chemical 209, 2015 (287–296).CrossRefGoogle Scholar
  19. 19.
    Gregory J. Yurek, John P. Hirth and Robert A. Rapp, Oxidation of Metals 8, 1974 (265–282).CrossRefGoogle Scholar
  20. 20.
    A. Imam, A. Boileau, T. Gries, J. Ghanbaja, D. Mangin, K. Hussein, H. Sezen, M. Amati and T. Belmonte, Journal of Crystal Growth 442, 2016 (52–61).CrossRefGoogle Scholar
  21. 21.
    J. Yu and W. Yi, Shanghai Press of Science and Technology Press, 337 (1987) (in Chinese).Google Scholar
  22. 22.
    J. Hvam, P. Morgen, E. M. Skou, T. Wolff and T. E. Warner, Journal of the European Ceramic Society 36, 2016 (3279–3284).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSichuan UniversityChengduChina
  2. 2.School of Aeronautical EngineeringCivil Aviation Flight University of ChinaGuanghanChina

Personalised recommendations