Skip to main content
Log in

Effect of Dilute Tellurium and Selenium Additions on the High-Temperature Oxidation Resistance of Copper Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The high-temperature oxidation resistance of Cu–Te–Se alloys and Cu–Se alloys at 300, 400, 500 and 600 °C was studied by measuring weight gain per unit area after fixed oxidation times. The morphologies of the oxide scales formed were observed using a scanning electron microscope, with the distribution of element detected by an energy-dispersive spectrometer, and the phases identified using X-ray diffraction. The focus of this study was to understand the effects of tellurium (Te) and selenium (Se) additions on the high-temperature oxidation resistance of copper alloys. At the dilute levels studied (≤0.5 wt% total), these elements underwent internal oxidation. Meanwhile, new phases formed, which made oxidation films more compact and increased the adherence between the oxide film and the alloy matrix, as well as prevented oxygen diffusing in the copper alloy matrix, so the oxidation resistance of copper alloys was improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Liu, S. Shao, K. Liu, X. Yang and D. Lu, Materials Science and Engineering: A 531, 2012 (141–146).

    Article  Google Scholar 

  2. D. E. Mencer, M. A. Hossain, R. Schennach, T. Grady, H. McWhinney, J. A. G. Gomes, M. Kesmez, J. R. Parga, T. L. Barr and D. L. Cocke, Vacuum 77, 2004 (27–35).

    Article  Google Scholar 

  3. Y. Xiao, S. Liu, X. Qu and Y. Jiang, Procedia Engineering 27, 2012 (880–886).

    Article  Google Scholar 

  4. Z. Xie, H. Gao, J. Wang and B. Sun, Materials Science and Engineering: A 529, 2011 (388–392).

    Article  Google Scholar 

  5. Z. Xu, P. Lu and Y. Shu, Engineering Failure Analysis 62, 2016 (199–207).

    Article  Google Scholar 

  6. Y. Ye, X. Yang, J. Wang, X. Zhang, Z. Zhang and T. Sakai, Journal of Alloys and Compounds 615, 2014 (249–254).

    Article  Google Scholar 

  7. S. J. Zinkle, Journal of Nuclear Materials 449, 2014 (277–289).

    Article  Google Scholar 

  8. R. Mahmudi, A. Karsaz, A. Akbari-Fakhrabadi and A. R. Geranmayeh, Materials Science and Engineering: A 527, 2010 (2702–2708).

    Article  Google Scholar 

  9. K. Ngamlerdpokin and N. Tantavichet, International Journal of Hydrogen Energy 39, 2014 (2505–2515).

    Article  Google Scholar 

  10. S.-L. Zhang, J. M. E. Harper and F. M. D’heurle, Journal of Electronic Materials 30, 2001 (207–213).

    Article  Google Scholar 

  11. J.-H. Su, Q.-M. Dong, P. Liu, H.-J. Li and B.-X. Kang, Materials Science and Engineering: A 392, 2005 (422–426).

    Article  Google Scholar 

  12. M. Z. Wei, Z. H. Cao, J. Shi, G. J. Pan, L. J. Xu and X. K. Meng, Materials Science and Engineering: A 646, 2015 (163–168).

    Article  Google Scholar 

  13. G. Plascencia and T. A. Utigard, Corrosion Science 47, 2005 (1149–1163).

    Article  Google Scholar 

  14. H. Y. Song, Q. S. Zhu, Z. G. Wang, J. K. Shang and M. Lu, Materials Science and Engineering: A 527, 2010 (1343–1350).

    Article  Google Scholar 

  15. H.-X. Wang, Y. Zhang, J.-L. Cheng and Y.-S. Li, Transactions of Nonferrous Metals Society of China 25, 2015 (184–190).

    Article  Google Scholar 

  16. Z.-Q. Xiang, Z. Li, Q. Lei, Z. Xiao and Y. Pang, Transactions of Nonferrous Metals Society of China 25, 2015 (444–450).

    Article  Google Scholar 

  17. C.-L. Chuang, J.-N. Aoh and R.-F. Din, Microelectronics Reliability 46, 2006 (449–458).

    Article  Google Scholar 

  18. C. Baratto, R. Kumar, G. Faglia, K. Vojisavljević and B. Malič, Sensors and Actuators B: Chemical 209, 2015 (287–296).

    Article  Google Scholar 

  19. Gregory J. Yurek, John P. Hirth and Robert A. Rapp, Oxidation of Metals 8, 1974 (265–282).

    Article  Google Scholar 

  20. A. Imam, A. Boileau, T. Gries, J. Ghanbaja, D. Mangin, K. Hussein, H. Sezen, M. Amati and T. Belmonte, Journal of Crystal Growth 442, 2016 (52–61).

    Article  Google Scholar 

  21. J. Yu and W. Yi, Shanghai Press of Science and Technology Press, 337 (1987) (in Chinese).

  22. J. Hvam, P. Morgen, E. M. Skou, T. Wolff and T. E. Warner, Journal of the European Ceramic Society 36, 2016 (3279–3284).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Project (2012BAE06B01-04) supported by the National Science and Technology Pillar Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dachuan Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, R., Jiao, L., Li, M. et al. Effect of Dilute Tellurium and Selenium Additions on the High-Temperature Oxidation Resistance of Copper Alloys. Oxid Met 89, 141–149 (2018). https://doi.org/10.1007/s11085-017-9793-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9793-6

Keywords

Navigation