Oxidation of Metals

, Volume 89, Issue 1–2, pp 279–301 | Cite as

The Effect of Sulfur on the Carburization of Three Fe–19Ni–21Cr–xAl (x = 0, 2, 6 at.%) Alloys at 900 °C in Oxygen-Contaminated CH4–H2–H2S Atmospheres

  • S. Liu
  • J. Shen
  • X. H. Guo
  • Y. Niu
Original Paper


The effect of sulfur on the carburization of three Fe–19Ni–21Cr–xAl (x = 0, 2, 6 at.%) alloys was studied at 900 °C in three CH4–H2–H2S gases providing different sulfur pressures. For all alloys, the carbon attack decreased with an increase in the sulfur pressure, even if it was never prevented completely. However, reaction with the gas richest in H2S produced also an external chromium sulfide scale. The overall corrosion rates were slower for Fe–19Ni–21Cr–6Al than for the other two alloys under each gas mixture due to the formation of some alumina in the external scales.


Sulfur effect Carburization Alumina Thermodynamic diagrams 



Financial support under the NSFC project (Nos. 51371183 and 51671203) is gratefully acknowledged.


  1. 1.
    J. Barnes, J. Corish, F. Franck and J. F. Norton, Oxidation of Metals 24, 85 (1985).CrossRefGoogle Scholar
  2. 2.
    J. Barnes, J. Corish and J. F. Norton, Oxidation of Metals 26, 333 (1986 ).CrossRefGoogle Scholar
  3. 3.
    A. Schneider, H. Viefhaus, G. Inden, H. J. Grabke and E. M. Muller-Lorenz, Materials and Corrosion 49, 336 (1998).CrossRefGoogle Scholar
  4. 4.
    A. Schneider, H. Viefhaus and G. Inden, Materials and Corrosion 51, 338 (2000).CrossRefGoogle Scholar
  5. 5.
    H. J. Grabke, D. Moszynski, E. M. Muller-Lorenz and A. Schneider, Surface and Interface Analysis 34, 369 (2002).CrossRefGoogle Scholar
  6. 6.
    R. Yin, Materials at High Temperatures 21, 205 (2004).CrossRefGoogle Scholar
  7. 7.
    L. Melo-Maximo, O. Salas, D. Melo-Maximo, J. Oseguera, V. M. Lopez-Hirata, R. D. Torres, C. M. Lepienski and R. M. de Souza, Surface & Coating Technology 237, 39 (2013).CrossRefGoogle Scholar
  8. 8.
    O. Salas, D. V. Melo-Maximo, J. Oseguera and R. Reichelt, Materials Characterization 83, 58 (2013).CrossRefGoogle Scholar
  9. 9.
    M. Hansel, C. A. Boddington and D. J. Young, Corrosion Science 45, 967 (2003).CrossRefGoogle Scholar
  10. 10.
    M. P. Brady, Y. Yamamoto, M. L. Santella and B. A. Pint, Scripta Materialia 57, 1117 (2007).CrossRefGoogle Scholar
  11. 11.
    D. R. G. Mitchell and D. J. Young, Journal of Material Science Letters 12, 1076 (1993).CrossRefGoogle Scholar
  12. 12.
    P. Becker and D. J. Young, Oxidation of Metals 67, 267 (2007).CrossRefGoogle Scholar
  13. 13.
    P. Franke and H. J. Seifert, Ternary Steel Systems: Phase Diagrams and Phase Transition Data, (Springer, Heidelberg, 2012).Google Scholar
  14. 14.
    S. Liu, Q. Q. Guo, X. F. Wu, J. Shen, L. L. Liu and Y. Niu, Corrosion Science 111, 436 (2016).CrossRefGoogle Scholar
  15. 15.
    D. J. Young, High Temperature Oxidation and Corrosion of Metal, (Elsevier, Oxford, 2010).Google Scholar
  16. 16.
    R. A, HSA chemistry version 6.0, Outokumpu Research Oy, Finland, 2006.Google Scholar
  17. 17.
    Q. Q. Guo, L. L. Liu, S. Liu and Y. Niu, Oxidation of Metals 83, 203 (2015).CrossRefGoogle Scholar
  18. 18.
    H. J. Christ, Materials and Corrosion 49, 258 (1998).CrossRefGoogle Scholar
  19. 19.
    R. Benz, J. F. Elliot and J. Chipman, Metallurgical Transactions 5, 2235 (1974).CrossRefGoogle Scholar
  20. 20.
    F. N. Mazandar and R. D. Pehlke, Metallurgical Transactions 4, 2067 (1973).CrossRefGoogle Scholar
  21. 21.
    S. P. Kinniard, D. J. Young and D. L. Trimm, Oxidation of Metals 26, 417 (1986).CrossRefGoogle Scholar
  22. 22.
    K. T. Jacob, D. B. Rao and H. G. Nelson, Oxidation of Metals 13, 25 (1979).CrossRefGoogle Scholar
  23. 23.
    D. Moszynski, H. J. Grabke and A. Schneider, Surface and Interface Analysis 34, 380 (2002).CrossRefGoogle Scholar
  24. 24.
    A. Schneider and H. J. Grabke, Materials and Corrosion 54, 793 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Institute of Metal ResearchUniversity of Chinese Academy of SciencesShenyangChina

Personalised recommendations