Skip to main content
Log in

The Effect of Temperature on the Formation of Oxide Scales Regarding Commercial Superheater Steels

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This study addresses the surface changes of three commercial steels (a low alloy ferritic 10CrMo9-10 steel, a Nb-stabilized austenitic AISI347 steel, and a high alloy austenitic Sanicro 28 steel) by comparing the oxide scale thicknesses, chemical compositions, and surface morphologies of samples after pre-oxidation at 200, 500 and 700 °C with different exposure times (5 and 24 h) under humid or dry conditions. With all three steels, the oxide scale thickness increased as functions of temperature and exposure time, the effect of temperature being more prominent than the effect of exposure time. The presence of water resulted in thicker oxide scales at the studied low alloy ferritic steel, whereas in the two austenitic steels, the presence of water increased chromium diffusion to the oxide scale rather than the scale thickness. The oxide layers characterized and analyzed in this paper will be further studied in terms of their abilities to resist corrosion by exposing them under corrosive conditions. The results regarding the corrosion resistance of the steels will be published in a sequel paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Spiegel, Materials and Corrosion 50(7) 373 (1999).

    Article  Google Scholar 

  2. L. A. Hansen, H. P. Nielsen, F. J. Frandsen, K. Dam-Johansen, S. Hørlyck and A. Karlsson, Fuel Processing Technology 64(1–3) 189 (2000).

    Article  Google Scholar 

  3. L. Åmand, B. Leckner, D. Eskilsson and C. Tullin, Energy & Fuels 20(3) 1001 (2006).

    Article  Google Scholar 

  4. H. P. Nielsen, F. J. Frandsen, K. Dam-Johansen and L. L. Baxter, Progress in Energy and Combustion Science 26(3) 283 (2000).

    Article  Google Scholar 

  5. D. Bankiewicz, Corrosion behavior of boiler tube materials during combustion of fuels containing Zn and Pb, (Academic Dissertation, Åbo Akademi University, Department of Chemical Engineering, Turku, Finland, 2012).

  6. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, 2nd ed, (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  7. J. Stringer, Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing A120–A121 129 (1989).

    Article  Google Scholar 

  8. A. S. Khanna, Introduction to High Temperature Oxidation and Corrosion, (ASM International, Ohio, 2002).

    Google Scholar 

  9. N. Israelsson, J. Engkvist, K. Hellstroem, M. Halvarsson, J.-E. Svensson and L.-G. Johansson, Oxidation of Metals 83(1–2) 29 (2015).

    Article  Google Scholar 

  10. H. Buscail, S. El Messki, F. Riffard, S. Perrier and C. Issartel, Oxidation of Metals 75(1–2) 27 (2011).

    Article  Google Scholar 

  11. C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, A. E. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A. D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer and M.-A. Van Ende, Calphad 54 35 (2016).

    Article  Google Scholar 

  12. D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. L. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace and B. S. Wright, Journal of Vacuum Science & Technology A 28(5) 1060 (2010).

    Article  Google Scholar 

  13. H. J. Mathieu, M. Datta and D. Landolt, Journal of Vacuum Science & Technology A 3(2) 331 (1985).

    Article  Google Scholar 

  14. C.-O. A. Olsson, S. Malmgren, M. Gorgoi and K. Edström, Electrochemical and Solid-State Letters 14(1) C1 (2011).

    Article  Google Scholar 

  15. G. Lothongkum, S. Chaikittisilp and A. W. Lothongkum, Applied Surface Science 218 202 (2003).

    Article  Google Scholar 

  16. P. Kofstad, High Temperature Corrosion, (Elsevier Applied Science Publishers Ltd., London and New York, 1988).

    Google Scholar 

  17. V. B. Trindade, U. Krupp, Ph E-G Wagenhuber and H.-J. Christ, Materials and Corrosion 56(11) 785 (2005).

    Article  Google Scholar 

  18. B. Pujilaksono, T. Jonsson, H. Heidari, M. Halvarsson, J.-E. Svensson and L.-G. Johansson, Oxidation of Metals 75(3–4) 183 (2011).

    Article  Google Scholar 

  19. E. Jacobsson, Scandinavian Journal of Metallurgy 14 252 (1985).

    Google Scholar 

  20. A. Skalli, A. Galerie and M. Caillet, Solid State Ionics 25(1) 27 (1987).

    Article  Google Scholar 

  21. B. Chattopadhyay and G. C. Wood, Oxidation of Metals 2(4) 373 1970.

    Article  Google Scholar 

  22. U. R. Evans, The Corrosion and Oxidation of Metals: First Supplementary Volume, (Edward Arnold Publishers Ltd., London, 1968).

    Google Scholar 

  23. R. L. Tapping, R. D. Davidson, T. E. Jackman and J. A. Davies, Surface and Interface Analysis 11(8) 441 (1988).

    Article  Google Scholar 

  24. B. Pujilaksono, T. Jonsson, M. Halvarsson, J.-E. Svensson and L.-G. Johansson, Corrosion Science 52 (5) 1560 (2010).

    Article  Google Scholar 

  25. H. Viitala, I. Galfi and P. Taskinen, Materials and Corrosion 66(9) 851 (2015).

    Article  Google Scholar 

  26. J. V. Cathcart, J. J. Campbell and G. P. Smith, Journal of the Electrochemical Society 105(8) 442 (1958).

    Article  Google Scholar 

  27. K. T. Jacob, C. Shekhar and M. Vinay, Journal of Chemical Engineering & Data 55(11) 4854 (2010).

    Article  Google Scholar 

  28. J. P. Coughlin, U.S. Bureau of Mines Bulletin 542 68 (1954).

    Google Scholar 

  29. A. Mittal, G. J. Albertsson, G. S. Gupta, S. Seetharaman and S. Subramanian, Metallurgical and Materials Transactions B 45B 338 (2014).

    Article  Google Scholar 

  30. S. E. Ziemniak, L. M. Anovitz, R. A. Castelli and W. D. Porter, The Journal of Chemical Thermodynamics 39(11) 1474 (2007).

    Article  Google Scholar 

  31. S. Jin and A. Atrens, Applied Physics A A50(3) 287 (1990).

    Article  Google Scholar 

  32. J. Lehmusto, B.-J. Skrifvars, P. Yrjas and M. Hupa, Fuel Processing Technology 105 98 (2013).

    Article  Google Scholar 

  33. M. Halvarsson, J. E. Tang, H. Asteman, J.-E. Svensson and L.-G. Johansson, Corrosion Science 48(8) 2014 (2006).

    Article  Google Scholar 

  34. A. Srisrual, J.-P. Petit, Y. Wouters and A. Galerie, Oxidation of Metals 79(3–4) 337 (2013).

    Article  Google Scholar 

  35. S. R. J. Saunders, M. Monteiro and F. Rizzo, Progress in Materials Science 53(5) 775 (2008).

    Article  Google Scholar 

  36. C. Ostwald and H. J. Grabke, Corrosion Science 46(5) 1113 (2004).

    Article  Google Scholar 

  37. L. Intiso, L.-G. Johansson, S. Canovic, S. Bellini, J.-E. Svensson and M. Halvarsson, Oxidation of Metals 77(5–6) 209 (2012).

    Article  Google Scholar 

  38. H. Comert and J. N. Pratt, The Journal of Chemical Thermodynamics 1612 1145 (1984).

    Article  Google Scholar 

  39. E. B. Rudnyi, E. A. Kaibicheva, L. N. Sidorov, M. T. Varshavskii and A. N. Men, The Journal of Chemical Thermodynamics 22(7) 623 (1990).

    Article  Google Scholar 

  40. C. Proff, T. Jonsson, C. Pettersson, J.-E. Svensson, L.-G. Johansson and M. Halvarsson, Materials at High Temperatures 26(2) 113 (2009).

    Article  Google Scholar 

  41. C. Pettersson, L.-G. Johansson and J.-E. Svensson, Oxidation of Metals 70(5–6) 241 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been carried out within the Academy of Finland project “Novel Approaches to Study Corrosion Mechanisms in High-temperature Industrial Processes” (Decision No. 296435). This work has been partly carried out within CLIFF (2014–2017) as part of the activities of Abo Akademi University. Other research partners are VTT Technical Research Centre of Finland Ltd, Lappeenranta University of Technology, Aalto University and Tampere University of Technology. Support from the National Technology Agency of Finland (Tekes), Andritz Oy, Valmet Technologies Oy, Amec Foster Wheeler Energia Oy, UPM-Kymmene Oyj, Clyde Bergemann GmbH, International Paper Inc., and Top Analytica Oy Ab is gratefully acknowledged. The authors would like to thank Mr. Linus Silvander for operating the SEM-apparatus and Mr. Jyrki Juhanoja for operating the XPS-apparatus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lehmusto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehmusto, J., Lindberg, D., Yrjas, P. et al. The Effect of Temperature on the Formation of Oxide Scales Regarding Commercial Superheater Steels. Oxid Met 89, 251–278 (2018). https://doi.org/10.1007/s11085-017-9785-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9785-6

Keywords

Navigation