Advertisement

Oxidation of Metals

, Volume 89, Issue 1–2, pp 61–80 | Cite as

Influence of Alloying Elements on the Behavior of Different Ferritic Steels as Candidate Materials for SOFC Interconnect

  • L. Garcia-Fresnillo
  • L. Niewolak
  • W. J. Quadakkers
  • G. H. Meier
Original Paper
  • 284 Downloads

Abstract

The efficiency of a solid oxide fuel cell (SOFC) can be improved by using a Ni-mesh between the ferritic steel interconnect and the Ni/YSZ anode. However, interdiffusion processes can lead to internal oxidation within the Ni-mesh and some microstructural changes, i.e., formation of an austenite zone and accelerated formation of σ-phase at the ferrite/austenite interface. These changes may adversely affect the performance of the cell during long-term operation. The present work focused on the influence of certain alloying elements on the overall behavior of the ferritic steel under simulated SOFC operating conditions to define conditions to minimize σ-phase formation without degrading the oxidation resistance and mechanical properties of the steel. The experimental results indicate that decreasing the amount of Cr and adjusting the amount of Nb, Si and W of the steel is a possible way to achieve that goal.

Keywords

Ferritic steels Chromium content Alloying elements Oxidation behavior Interdiffusion processes σ-phase 

Notes

Acknowledgements

L. G.-F. and G. H. M. gratefully acknowledge the Office of Naval Research for support of their participation in this collaboration under Contract N00014-12-1-0612, Dr. Airan Perez, Scientific Monitor. The authors are grateful to M. Hua and Q. Wang for carrying out the EBSD analyses and to Mr. W. Nowak for carrying out the GDOES analyses. Part of the investigations was carried out in the frame of the ZEUS III project funded by the German Ministry of Economics (BMWi) under Contract nr. FKZ0327766A-D. VDM Metals GmbH is acknowledged for supplying the studied materials.

Compliance with Ethical Standards

Conflict of interest

The authors declare they have no conflict of interest.

Human and Animal Rights Statement and Informed Consent

There were no human participants or animals in this study.

References

  1. 1.
    Z. Zeng and K. Natesan, Solid State Ionics 167, 9 (2004).CrossRefGoogle Scholar
  2. 2.
    Z. G. Yang, K. S. Weil, D. M. Paxton, and J. W. Stevenson, Journal of the Electrochemical Society 150, A1188 (2003).CrossRefGoogle Scholar
  3. 3.
    W. J. Quadakkers, H. Greiner, and W. Köck, in Proceedings of the 1st First European Solid Oxide Fuel Cell Forum, Vol. 525 (1994).Google Scholar
  4. 4.
    W. J. Quadakkers, J. Piron-Abellan, V. Shemet, and L. Singheiser, Materials at High Temperatures 20, 115 (2003).Google Scholar
  5. 5.
    W. J. Quadakkers, T. Malkow, J. Piron-Abellan, U. Flesch, V. Shemet, and L. Singheiser, in Proceedings of the 4th European Solid Oxide Fuel Cell Forum, Vol. 2 (2000), p. 827.Google Scholar
  6. 6.
    P. Huczkowski, N. Christiansen, V. Shemet, L. Niewolak, J. Piron-Abellan, L. Singheiser, and W. J. Quadakkers, Fuel Cells 6, 93 (2006).CrossRefGoogle Scholar
  7. 7.
    L. Singheiser, P. Huczkowski, T. Markus, and W. J. Quadakkers, in Shreir’s Corrosion, Vol. 1, Chapter 1.19 (Elsevier, Amsterdam, 2010), p. 482.Google Scholar
  8. 8.
    L. Niewolak, F. Tietz, and W. J. Quadakkers, in High Temperature Solid Oxide Fuel Cells for the 21st Century, eds. K. Kendall and M. Kendall, Chapter 7 (Elsevier, 2015), p. 195.Google Scholar
  9. 9.
    L. Garcia-Fresnillo, V. Shemet, A. Chyrkin, L. G. J. de Haart, and W. J. Quadakkers, Journal of Power Sources 271, 213 (2014).CrossRefGoogle Scholar
  10. 10.
    L. Niewolak, L. Garcia-Fresnillo, G. H. Meier, and W. J. Quadakkers, Journal of Alloys and Compounds 638, 405 (2015).CrossRefGoogle Scholar
  11. 11.
    L. Niewolak, E. Wessel, T. Huettel, C. Asensio-Jimenez, L. Singheiser, and W. J. Quadakkers, Journal of the Electrochemical Society 159, F725 (2012).CrossRefGoogle Scholar
  12. 12.
    T. B. Massalski and H. Okamoto, in Binary Alloy Phase Diagrams (ASM International, Material Park, Ohio 1990).Google Scholar
  13. 13.
    J. Froitzheim, G. H. Meier, L. Niewolak, P. J. Ennis, H. Hattendorf, L. Singheiser, and W. J. Quadakkers, Journal of Power Sources 178, 163 (2008).CrossRefGoogle Scholar
  14. 14.
    A. F. Padilha and P. R. Rios, ISIJ International 42, 325 (2002).CrossRefGoogle Scholar
  15. 15.
    L. Garcia-Fresnillo, R. Patel, L. Niewolak, W. J. Quadakkers, M. Hua, Q. Wang, and G. H. Meier, Materials at High Temperatures (in press).Google Scholar
  16. 16.
    R. Hojda, W. Heimann, and W. J. Quadakkers, in ThyssenKrupp Techforum, Vol. 20 (2003).Google Scholar
  17. 17.
    W. J. Quadakkers, L. Paul, and H. Hattendorf, in Presented at Fuel Cell Symposium (San Antonio, USA, 2010).Google Scholar
  18. 18.
    C. Asensio-Jimenez, L. Niewolak, H. Hattendorf, B. Kuhn, P. Huczkowski, L. Singheiser, and W. J. Quadakkers, Oxidation of Metals 79, 15 (2013).CrossRefGoogle Scholar
  19. 19.
    W. J. Quadakkers and J. Zurek, in Shreir’s Corrosion, Vol. 1, Chapter 1.17 (Elsevier, Amsterdam, 2010), p. 407.Google Scholar
  20. 20.
    O. P. Watt, Transactions of the American Electrochemical Society 29, 395 (1916).Google Scholar
  21. 21.
    W. J. Quadakkers, A. Elschner, W. Speier, and H. Nickel, Applied Surface Science 52, 271 (1991).CrossRefGoogle Scholar
  22. 22.
    B. C. H. Steele and A. Heinzel, Nature 414, 345 (2001).CrossRefGoogle Scholar
  23. 23.
    J. D. Nicholas, in Solid Oxide Fuel Cell Promise, Progress, and Priorities (SOFC-PPP) Workshop (Arlington, USA, 2013).Google Scholar
  24. 24.
    L. Niewolak, D. J. Young, H. Hattendorf, L. Singheiser, and W. J. Quadakkers, Oxidation of Metals 82, 123 (2014).CrossRefGoogle Scholar
  25. 25.
    J. M. Vitek and S. A. David, Welding Journal 65, 106 (1986).Google Scholar
  26. 26.
    E. R. Jette and F. Foote, Metals and Alloys 7, 207 (1936).Google Scholar
  27. 27.
    A. J. Cook and F. W. Jones, Journal Iron and Steel Institute 148, 217 (1943).Google Scholar
  28. 28.
    T. Tetsui, M. Shinohara, and K. Abiko, Physica Status Solidi 160, 459 (1997).CrossRefGoogle Scholar
  29. 29.
    W. A. Soffa and D. E. Laughlin, in Physical Metallurgy, eds. D. E. Laughlin and K. Hono, 5th edn, Chapter 8 (Elsevier, 2014).Google Scholar
  30. 30.
    C. Asensio, A. Chyrkin, L. Niewolak, V. Konoval, H. Hattendorf, B. Kuhn, L. Singheiser, and W. J. Quadakkers, Electrochemical and Solid-State Letters 14, 17 (2011).CrossRefGoogle Scholar
  31. 31.
    C. Asensio-Jimenez, Effect of Composition, Microstructure and Component Thickness on the Oxidation Behaviour of Laves Phase Strengthened Interconnect Steel for Solid Oxide Fuel Cells (SOFC) (PhD Thesis, RWTH Aachen University, Aachen, Germany, 2013).Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPittsburghUSA
  2. 2.AUTOVISION ServiciosMartorellSpain
  3. 3.Forschungszentrum Jülich, IEK-2JülichGermany

Personalised recommendations