Oxidation of Metals

, Volume 88, Issue 1–2, pp 179–190 | Cite as

Influence of the Slurry Thickness and Heat Treatment Parameters on the Formation of Aluminium Diffusion Coating

  • Jorge Bermejo Sanz
  • Raquel Roussel García
  • Vladislav Kolarik
  • María del Mar Juez Lorenzo
Original Paper


Formation of the FeAl3 or Fe2Al5 phase during the aluminization of iron-based alloys causes detrimental behaviour of the material due to the brittleness of these phases and the different coefficient of thermal expansion between the base material and the resulting diffusion coating. In order to control the microstructure of the produced diffusion zone and its evolution, two different slurry thicknesses (30–50 and 100–150 µm) using high-purity aluminium spherical particles and three different heat treatments times (5, 10 and 20 h) were tested over ferritic–martensitic P92 steel. After the heat treatment, iron–aluminide phases rich in aluminium content were formed. After 1350 hours of exposure in air at 650 °C, it was found that for the coatings in the range of 30–50 µm neither FeAl3 nor Fe2Al5 phase remained in the diffusion coating, while Fe2Al5 did remain in those coatings in the range of 100–150 µm.


Slurry aluminium Coating Diffusion coating Aluminization Iron–aluminium intermetallics Thickness optimization 



The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No NMP3-SL-2012-310436 POEMA.


  1. 1.
    A. Agüero, R. Muelas, M. Gutierrez, R. Van Vulpen, S. Osgerby and J. P. Banks, Surface and Coatings Technology 201, 6253 (2007).CrossRefGoogle Scholar
  2. 2.
    R. Roussel, V. Kolarik, M. Juez Lorenzo and H. Fietzek, Oxidation of Metals 81, 179 (2014).CrossRefGoogle Scholar
  3. 3.
    V. Kolarik, R. Roussel, M. Juez Lorenzo and H. Fietzek, Materials at High Temperatures 29, 89 (2012).CrossRefGoogle Scholar
  4. 4.
    A. Agüero, Revista de Metalurgia 43, 63 (2007).Google Scholar
  5. 5.
    F. Pedraza, M. Mollard, B. Ranou, J. Balmain, B. Bouchaud and G. Bonnet, Materials Chemistry and Physics 134, 700 (2012).CrossRefGoogle Scholar
  6. 6.
    X. Montero, M. Galetz and M. Schütze, Surface and Coatings Technology 206, 1586 (2011).CrossRefGoogle Scholar
  7. 7.
    B. Bouchaud, B. Rannou and F. Pedraza, Materials Chemistry and Physics 143, 416 (2013).CrossRefGoogle Scholar
  8. 8.
    A. Agüero, V. González, M. Gutiérrez, R. Knödler, R. Muelas and S. Straub, Materials and Corrosion 62, 561 (2011).CrossRefGoogle Scholar
  9. 9.
    A. Agüero, M. García and M. Gutiérrez, Materials and Corrosion 56, 937 (2005).Google Scholar
  10. 10.
    A. Agüero, R. Muelas, A. Pastor and S. Osgerby, Surface and Coatings Technology 200, 1219 (2005).CrossRefGoogle Scholar
  11. 11.
    A. Agüero, V. González, P. Mayr and K. Spiradek-Hahn, Materials Chemistry and Physics 141, 432 (2013).CrossRefGoogle Scholar
  12. 12.
    B. A. Pint, Y. Zhang, L. R. Walker and I. G. Wright, Surface and Coatings Technology 202, 637 (2007).CrossRefGoogle Scholar
  13. 13.
    A. Fry, S. Osgerby and M. Wright, Oxidation of Alloys in Steam. Report No. NPL Report MATC(A)90 (2002).Google Scholar
  14. 14.
    B. L. Bates, Y. Q. Wang, Y. Zhang and B. A. Pint, Surface and Coatings Technology 204, 766 (2009).CrossRefGoogle Scholar
  15. 15.
    S. Dryepondt, Y. Zhang and B. A. Pint, Surface and Coatings Technologie 201, 3880 (2006).CrossRefGoogle Scholar
  16. 16.
    S. Velraj, Y. Zhang, E. W. Hawkins and B. A. Pint, Materials and Corrosion 63, 909 (2012).Google Scholar
  17. 17.
    K. Nishida and T. Narita, Japan Inst. Metals 35, 269 (1971).CrossRefGoogle Scholar
  18. 18.
    V. I. Dybkov, Journal of Materials Science 25, 3615 (1990).CrossRefGoogle Scholar
  19. 19.
    Y. Tanaka and M. Kajihara, Journal of Materials Science 45, 5676 (2010).CrossRefGoogle Scholar
  20. 20.
    Y. Tanaka and M. Kajihara, Materials Transactions 50, 2212 (2009).CrossRefGoogle Scholar
  21. 21.
    G. Temizel and M. Özenbaş, Turkish Journal of Engineering and Environmental Sciences 31, 71 (2007).Google Scholar
  22. 22.
    H. R. Shahverdi, M. R. Ghomashchi, S. Shabestari and J. Hejaci, Journal of Materials Processing Technology 124, 345 (2002).CrossRefGoogle Scholar
  23. 23.
    W.-J. Cheng and C.-J. Wang, Surface and Coatings Technology 204, 824 (2009).CrossRefGoogle Scholar
  24. 24.
    V. Rohr, M. Schütze, E. Fortuna, D. N. Tsipas, A. Milewska and F. J. Pérez, Materials and Corrosion 56, 874 (2005).Google Scholar
  25. 25.
    B. A. Pint, Y. Zhang, P. F. Tortorelli, J. A. Haynes and I. G. Wright, Materials at High Temperatures 18, 1 (2001).CrossRefGoogle Scholar
  26. 26.
    Y. Zhang, A. P. Liu and B. A. Pint, Materials and Corrosion 58, 751 (2007).Google Scholar
  27. 27.
    S. Kobayashi and T. Yakou, Materials Science and Engineering A 338, 44 (2002).CrossRefGoogle Scholar
  28. 28.
    M. V. Akdeniz and A. O. Mekhrabov, Acta mater. 46, 1185 (1998).CrossRefGoogle Scholar
  29. 29.
    A. O. Mekhrabov and M. V. Akdeniz, Acta Materials 47, 2067 (1999).CrossRefGoogle Scholar
  30. 30.
    H. J. Grabke, Intermetallics 7, 1153 (1999).CrossRefGoogle Scholar
  31. 31.
    X. Montero, M. C. Galetz and M. Schütze, Surface and Coatings Technologie 236, 465 (2013).CrossRefGoogle Scholar
  32. 32.
    J. T. Bauer, X. Montero, M. Schütze, and M. C. Galetz, Surface and Coatings Technologie 285, 179 (2016).Google Scholar
  33. 33.
    R. Roussel, Research on multifunctional high temperature coatings based on micro sized aluminium particles. PhD Thesis, Universidad Complutense de Madrid, Fraunhofer ICT, 2013.Google Scholar
  34. 34.
    M. C. Galetz, X. Montero, M. Mollard, M. Günthner, F. Pedraza and M. Schütze, Intermetallics 44, 8 (2014).CrossRefGoogle Scholar
  35. 35.
    K. Murakami, N. Nishida, K. Osamura, Y. Tomota and T. Suzuki, Acta Materialia 52, 2173 (2004).CrossRefGoogle Scholar
  36. 36.
  37. 37.
    L. Levin, A. Ginzburg, L. Klinger, T. Werber, A. Katsman and P. Schaaf, Surface and Coatings Technologie 106, 209 (1998).CrossRefGoogle Scholar
  38. 38.
    E. G. Ivanov and N. E. Zhukov, translated from Metallovedenie I Termisheskaya Obrabotka Metallov, No. 6 (1979), pp. 33–35.Google Scholar
  39. 39.
    Y. Zhang, B. A. Pint, K. M. Cooley and J. A. Haynes, Surface and Coatings Technology 200, 1231 (2005).CrossRefGoogle Scholar
  40. 40.
    B. A. Pint and Y. Zhang, Materials and Corrosion 62, 549 (2011).Google Scholar
  41. 41.
    I. O. Golosnoy, A. Cipitria and T. W. Clyne, Journal of Thermal Spray Technology 18, 809 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Fraunhofer Institute of Chemical TechnologyPfinztalGermany

Personalised recommendations