Oxidation of Metals

, Volume 88, Issue 1–2, pp 145–154 | Cite as

Aluminum Solid-Solution Coating for High-Temperature Corrosion Protection

Original Paper


Iron aluminide coatings are very resistant to corrosion at 600–700 °C. However, interdiffusion is responsible for a significant reduction of the Al content at the coating surface. A stable diffusion barrier could in principle prevent this degradation mechanism. A new diffusion barrier based on nitrogen was produced and was very effective in reducing coating–substrate interdiffusion on P92. After nitriding P92, an Al slurry was applied and heat-treated, resulting in an overlay coating consisting of an Al solid solution with Cr and Fe. This coating was thinner and quite different from the several Al–Fe intermetallics obtained without nitriding and was fully characterized. A diffusion study was conducted and the results showed that after 2000 h at 650 °C, the new coating suffered very little changes and no interdiffusion with the substrate in contrast with the intermetallic coating deposited without nitriding. Testing under steam and fire-side atmospheres showed promising behavior.


Aluminum solid solution coating High-temperature corrosion Diffusion barrier Nitriding 



The authors are grateful for the support by the Spanish Ministry of Economy and Competitiveness for financial support (ENE2014-52359-C3-1-R) as well as the EC (POEMA, G.A. No.: 310436). The authors also acknowledge all members of the Metallic Materials Area at INTA for technical support, as well as Cristina Gallego and Luis Angurel from the “Consejo Superior de Investigaciones Científicas”(CSIC)—Zaragoza for their excellent microscopy work.


  1. 1.
    R. Sakidja, J. H. Perepezko and P. Calhoun, Oxidation of Metals 81, 167 (2014).CrossRefGoogle Scholar
  2. 2.
    S. C. Deevi and V. K. Sikka, Progress in Material Science 42, 177 (1997).CrossRefGoogle Scholar
  3. 3.
    J. W. Lee and Y. C. Kuo, Surface & Coating Technologies 200, 1225 (2005).CrossRefGoogle Scholar
  4. 4.
    H. Lee, H. Kang, J. Kim, H. K. Shin, J. Lee, S. H. Huh, J. Sung and H. J. Lee, Surface & Coating Technologies 240, 221 (2014).CrossRefGoogle Scholar
  5. 5.
    L. Meifeng, L. Lei, W. Yating, Z. Cheng, W. Wenbin and P. Deng, Journal of Alloys and Compounds 551, 389 (2013).CrossRefGoogle Scholar
  6. 6.
    A. Agüero, K. Spiradek, M. Gutiérrez, R. Muelas and S. Höfinger, Materials Forum 595–598, 251 (2008).CrossRefGoogle Scholar
  7. 7.
    S. Velraj, Y. Zhang, E. W. Hawkins and B. A. Pint, Materials and Corrosion 63, 909 (2010).CrossRefGoogle Scholar
  8. 8.
    O. Knotek, E. Lugscheider, F. Löffier and W. Beele, Surface & Coating Technologies 68/69, 22 (1994).CrossRefGoogle Scholar
  9. 9.
    J. Mueller and D. Neuschuetz, Vacuum 71, 247 (2003).CrossRefGoogle Scholar
  10. 10.
    T. Narita, F. Land, K. Z. Thosin, T. Yoshioka, T. Izumi, H. Yakuwa and S. Hayashi, Oxidation of Metals 68, 343 (2007).CrossRefGoogle Scholar
  11. 11.
    F. Wu, H. Murakami and A. Suzuki, Surface & Coating Technologies 168, 62 (2003).CrossRefGoogle Scholar
  12. 12.
    J. A. Haynes, Y. Zhang, K. M. Cooley, L. Walker, K. S. Reeves and B. A. Pint, Surface & Coating Technologies 188–189, 153 (2004).CrossRefGoogle Scholar
  13. 13.
    X. Tan, X. Peng and F. Wang, Surface & Coating Technologies 274, 62 (2013).CrossRefGoogle Scholar
  14. 14.
    Z. Xua, R. Muc, L. Hec and X. Caoa, Journal of Alloys and Compounds 466, 471 (2008).CrossRefGoogle Scholar
  15. 15.
    A. Agüero, V. González, M. Gutiérrez, R. Knödler, R. Muelas and S. Straub, Materials and Corrosion 62, 561 (2011).CrossRefGoogle Scholar
  16. 16.
    A. Agüero, I. Baraibar, V. González, R. Muelas and D. Plana, Oxidation of Metals 85, 263–281 (2016).CrossRefGoogle Scholar
  17. 17.
    Y. Y. Chang, C. C. Tsaur and J. C. Rock, Surface & Coating Technologies 200, 5688 (2006).Google Scholar
  18. 18.
    A. Rouaix-Vande Put and B. Pint, Surface & Coating Technologies 206, 5036 (2012).CrossRefGoogle Scholar
  19. 19.
    B. Li, J. Li, L. Wu, W. Lin, Y. Sun and Y. Zhang, Journal of Alloys and Compounds 627, 1 (2015).CrossRefGoogle Scholar
  20. 20.
  21. 21.
    E. J. Mittemeijer and M. A. J. Somers, Surface Engineering 13, 483 (1997).CrossRefGoogle Scholar
  22. 22.
    S. D. Oliveira, A. P. Tschiptschin and C. E. Pinedo, Materials & Design 28, 1714 (2007).CrossRefGoogle Scholar
  23. 23.
    A. Agüero, M. Gutiérrez and V. González, Materials at High Temperature 27, 257 (2008).CrossRefGoogle Scholar
  24. 24.
    B. Rannou, B. Bouchaud, J. Balmain, G. Bonnet and F. Pedraza, Oxidation of Metals 81, 139 (2014).CrossRefGoogle Scholar
  25. 25.
    A. Agüero, Energy Materials 3, 35 (2008).CrossRefGoogle Scholar
  26. 26.
    A. Agüero, V. González, M. Gutiérrez and R. Muelas, Surface & Coating Technologies 237, 30 (2013).CrossRefGoogle Scholar
  27. 27.
    C. Blawert, B. L. Mordike, U. Rensch, G. Schreiber and H. Oettel, Surface Engineering 18, 249 (2002).CrossRefGoogle Scholar
  28. 28.
    U. R. Kattner, Al–Fe (Aluminum–Iron). in Binary Alloys Phase Diagrams, Vol. 1, eds. T. B. Massalski et al. (ASM International, USA, 2001), pp. 147–149.Google Scholar
  29. 29.
    A. Agüero, M. Gutiérrez and V. González, Deffect and Diffusion Journal 289–292, 243 (2009).CrossRefGoogle Scholar
  30. 30.
    L. Korcakova, J. Hald and M. A. J. Somers, Materials Characterization 47, 111 (2001).CrossRefGoogle Scholar
  31. 31.
    A. Agüero, M. Gutiérrez, R. Muelas and K. Spiradek-Hahn, Surface Engineering (2016). doi: 10.1080/02670844.2016.1155691.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Alina Agüero
    • 1
  • Marcos Gutiérrez
    • 1
  • Raúl Muelas
    • 2
  1. 1.Instituto Nacional de Técnica AeroespacialTorrejón de ArdozSpain
  2. 2.Ingeniería y Sistemas para la Defensa de EspañaMadridSpain

Personalised recommendations