Oxidation of Metals

, Volume 88, Issue 1–2, pp 57–70 | Cite as

Assessment of a Mechanical Model Associated with Oxide Scale Growth on T91 Steel at 550 °C Under Wet Atmosphere

  • Marie-Christine Demizieux
  • Jérôme Favergeon
  • Laure Martinelli
  • Clara Desgranges
  • Gaël Sattonnay
Original Paper

Abstract

The Deflection Test in Monofacial Oxidation (DTMO) was used to assess the parameters of a phenomenological model aimed to represent the mechanical behavior of the martensitic T91 steel during oxidation at 550 °C under wet atmosphere. The constitutive equations of the mechanical model were determined from the knowledge of the growth mechanism of the oxide scale. Some model parameters were found in the literature and complementary data were obtained by the comparison between experimental DTMO curve and simulated results.

Keywords

Deflexion test in monofacial oxidation Viscoplastic strain Growth strain Spallation 

References

  1. 1.
    M. C. Demizieux, C. Desgranges, L. Martinelli and J. Favergeon, International Corrosion Conference Series 2015 (2015).Google Scholar
  2. 2.
    G. Stoney, Proceedings of the Royal Society London A82, 1712 (1909).Google Scholar
  3. 3.
    U. R. Evans, An Introduction to Metallic Corrosion, (1948).Google Scholar
  4. 4.
    A. Brenner and S. Senderoff, The Journal of Research of NIST 42, 105 (1949).Google Scholar
  5. 5.
    W. N. Bradshaw and S. G. Clarke, Journal of the Electrodepositors’ Technical Society 25 (1949).Google Scholar
  6. 6.
    D. D. Dankov and P. V. Churaev, Dokl. Akad. Nauk SSSR 73, 1221 (1950).Google Scholar
  7. 7.
    D. A. Vermilyea, Journal of Electrochemical Society 104, 140 (1957).CrossRefGoogle Scholar
  8. 8.
    J. G. Zhao and A. M. Huntz, Journal of Materials Science 19, 3166 (1984).CrossRefGoogle Scholar
  9. 9.
    A. M. Huntz, G. Calvarin Amiri, H. E. Evans and G. Cailletaud, Oxidation of Metals 57, 499 (2002).CrossRefGoogle Scholar
  10. 10.
    H. E. Evans, International Materials Reviews 40, 1 (1995).CrossRefGoogle Scholar
  11. 11.
    W. Przybilla and M. Schütze, Oxidation of Metals 58, 103 (2002).CrossRefGoogle Scholar
  12. 12.
    S. Maharjan, X. C. Zhang, F. Z. Xuan, Z. D. Wang and S. T. Tu, Journal of Applied Physics 110, 2011 (063511).CrossRefGoogle Scholar
  13. 13.
    S. Maharjan, X. Zhang and Z. Wang, Oxidation of Metals 77, 93 (2012).CrossRefGoogle Scholar
  14. 14.
    L. Kurpaska, “Analysis of mechanical stresses in oxide films at high temperature, application to the Zr/ZrO2 system”, PhD Thesis, Université de Technologie de Compiègne, (2012).Google Scholar
  15. 15.
    D. Fettré, S. Bouvier, J. Favergeon and L. Kurpaska, Applied Surface Science 357, 777 (2015).CrossRefGoogle Scholar
  16. 16.
    J. L. Ruan, Y. Pei and D. Fang, Corrosion Science 66, 315 (2013).CrossRefGoogle Scholar
  17. 17.
    N. Vallino, “Modèle thermos-mécanique pour l’analyse du comportement des interfaces metal-oxyde. Etude du phénomène de fissuration périodique”, PhD Thesis, Université de Technologie de Compiègne, (2000).Google Scholar
  18. 18.
    L. Maréchal, “Contribution à l’étude de la résistance à l’oxydation d’alliages Fe–Cr–Al type ODS: aspects cinétiques, diffusionnels et microstructuraux”, PhD Thesis, Université Paris Sud, (2002).Google Scholar
  19. 19.
    I. G. Wright and R. B. Dooley, International Materials Reviews 55, 129 (2010).CrossRefGoogle Scholar
  20. 20.
    E. M. Haney, F. Dalle, M. Sauzay, L. Vincent, I. Tournié, L. Allais and B. Fournier, Materials Science and Engineering A510–511, 99 (2009).CrossRefGoogle Scholar
  21. 21.
    L. Kloc and V. Sklenicka, Materials Science and Engineering A234–236, 962 (1997).CrossRefGoogle Scholar
  22. 22.
    D. R. Clarke, Acta Materialia 51, 1393 (2003).CrossRefGoogle Scholar
  23. 23.
    A. G. Crouch and J. Robertson, Acta Metallurgica Materialia 38, 2567 (1990).CrossRefGoogle Scholar
  24. 24.
    B. Fournier, “Fatigue-fluage des aciers martensitiques à 9–12% Cr: Comportement et endommagement”, PhD Thesis, Mines Paris-Tech., (2007).Google Scholar
  25. 25.
    B. Panicaud, “Contraintes de « croissance » et cinétiques d’oxydation dans des couches d’oxydes thermiques de Fe et Ni, étude in situ par Diffraction des rayons X et modélisation”, PhD Thesis, Université de La Rochelle, (2004).Google Scholar
  26. 26.
    N. Bertrand, C. Desgranges, D. Poquillon, M. C. Lafont and D. Monceau, Oxidation of Metals 73, 139 (2010).CrossRefGoogle Scholar
  27. 27.
    S. Osgerby, Materials at High Temperatures 17, 307 (2000).CrossRefGoogle Scholar
  28. 28.
    L. Martinelli, C. Desgranges, F. Rouillard, K. Ginestar, M. Tabarant and K. Rousseau, Corrosion Science 100, 253 (2015).CrossRefGoogle Scholar
  29. 29.
    M. C. Demizieux, “ Etude des mécanismes de formation et d’écaillage des couches d’oxydes formées après oxydation de l’alliage T91 en milieu vapeur d’eau à 550 °C”, PhD Thesis, Université de Technologie de Compiègne, (2015).Google Scholar
  30. 30.
    H. Evin, “ Low Cr alloys with an improved high temperature corrosion resistance”, PhD Thesis, Université de Bourgogne, (2010).Google Scholar
  31. 31.
    J. L. Smialek, JOM 58, 29 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Laboratoire Roberval, UMR UTC-CNRS 7337Sorbonne Universités - Université de Technologie de CompiègneCompiègne CedexFrance
  2. 2.DEN - Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEAUniversité Paris-SaclayGif-Sur-YvetteFrance
  3. 3.ICMMO UMR 8182Université Paris-SaclayOrsayFrance

Personalised recommendations