Oxidation of Metals

, Volume 88, Issue 1–2, pp 73–85 | Cite as

Water Vapor Effects on the CMAS Degradation of Thermal Barrier Coatings

  • B. S. Lutz
  • R. W. Jackson
  • N. M. Abdul-Jabbar
  • V. K. Tolpygo
  • C. G. Levi
Original Paper


A new damage mechanism of CMAS degradation of TBCs involving delamination through the thermally grown oxide (TGO) has been observed on burner rig tests of EB-PVD thermal barrier coatings. This mechanism operates in the absence of CMAS melting and is mediated by hydroxylation and volatilization of the constituent CMAS hydroxides, followed by vapor transport to the vicinity of the TGO through the TBC porosity. Analyses reveal the formation of spinel (MgAl2O4) and anorthite (CaAl2Si2O8) at the TGO/TBC interface, with concomitant evolution of porosity at the spinel/alumina interface. Tests were conducted in a controlled atmosphere tube furnace to validate the hypothesis and assess the factors that affect the evolution of the deleterious oxides. The microstructure of the reaction products formed in the lab test is compared to that formed in the burner rig.


Thermal barrier coatings CMAS Thermally grown oxide Spinel 



Research is supported by the Honeywell-UCSB Alliance for Thermal Barrier Coatings, monitored by W. Baker and N. Conklin. The authors are grateful to Deryck Stave, Maxwell Fisch, and Duncan Campbell for their assistance in building the controlled atmosphere furnace apparatus. Funding was provided by Honeywell Aerospace (PO4204813245E).


  1. 1.
    S. Krämer, J. Yang, C. G. Levi, and C. A. Johnson, Journal of the American Ceramic Society 89, 3167 (2006).CrossRefGoogle Scholar
  2. 2.
    C. G. Levi, J. W. Hutchinson, M. H. Vidal-Sétif, and C. A. Johnson, MRS Bulletin 37, 932 (2012).CrossRefGoogle Scholar
  3. 3.
    M. P. Borom, C. A. Johnson, and L. A. Peluso, Surface and Coatings Technology 87, 116 (1996).CrossRefGoogle Scholar
  4. 4.
    V. K. Tolpygo, Oxidation of Metals (this conference, submitted).Google Scholar
  5. 5.
    A. Hashimoto, Geochimica et Cosmochimica Acta 56, 511 (1992).CrossRefGoogle Scholar
  6. 6.
    P. J. Meschter, E. J. Opila, and N. A. Jacobson, Annual Review of Materials Research 43, 559 (2013).CrossRefGoogle Scholar
  7. 7.
    C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. K. Eriksson, I. Hack, H. Jung, Y. B. Kang, J. Melançon, A. D. Pelton, C. Robelin, and S. Petersen, Calphad 33, 295 (2009).CrossRefGoogle Scholar
  8. 8.
    A. Dimyati, H. J. Penkalla, P. Untoro, D. Naumenko, W. J. Quadakkers, and J. Mayer, Zeitschrift fur Metallkunde 94, 180 (2003).CrossRefGoogle Scholar
  9. 9.
    I. Ganesh, International Materials Reviews 58, 63 (2013). CrossRefGoogle Scholar
  10. 10.
    T. LaTourrette and G. J. Wasserburg, Earth and Planetary Science Letters 158, 91 (1998).CrossRefGoogle Scholar
  11. 11.
    A. G. Evans, D. R. Clarke, and C. G. Levi, in Turbine Aerodynamics, Heat Transfer, Materials and Mechanics, eds T. I. -P. Shih and V. Yang, (The American Institute of Aeronautics and Astronautics, Reston, 2014), p. 495.CrossRefGoogle Scholar
  12. 12.
    R. W. Jackson, D. M. Lipkin, T. M. Pollock, Acta Materialia 80, 39 (2014).CrossRefGoogle Scholar
  13. 13.
    P. Y. Hou, Annual Reviews of Materials Research 38, 275 (2008).CrossRefGoogle Scholar
  14. 14.
    P. Y. Thery, M. Poulain, M. Dupeux, and M. Braccini, Journal of Materials Science 44, 1726 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Materials DepartmentUniversity of California, Santa BarbaraSanta BarbaraUSA
  2. 2.Honeywell AerospacePhoenixUSA

Personalised recommendations