Oxidation of Metals

, Volume 88, Issue 1–2, pp 133–143 | Cite as

Mechanical and Thermo-physical Properties of Plasma-Sprayed Thermal Barrier Coatings: A Literature Survey

  • Pierre Planques
  • Vanessa Vidal
  • Philippe Lours
  • Vincent Proton
  • Fabrice Crabos
  • Julitte Huez
  • Bernard Viguier


Atmospheric plasma-sprayed thermal barrier coatings (APS TBCs) have been studied from an extensive review of the dedicated literature. A large number of data have been collected and compared, versus deposition parameters and/or measurement methods, and a comparison was made between two different microstructures: standard APS coatings and segmented coatings. Discussion is focused on the large scattering of results reported in the literature even for a given fabrication procedure. This scattering strongly depends on the methods of measurement as expected, but also—for a given method—on the specific conditions implemented for the considered experimental investigation. Despite the important scattering, general trends for the correlation of properties to microstructure and process parameters can be derived. The failure modes of TBC systems were approached through the evolution of cracking and spalling at various life fractions.


Air plasma sprayed (APS) Thermal barrier coatings (TBC) Mechanical properties Cracking 


  1. 1.
    Y. Kuroda, K. Fukaura, H. Sunada and H. Izumi, Journal of the Japan Society of Powder and Powder Metallurgy 38, 787 (1991).CrossRefGoogle Scholar
  2. 2.
    L. Bianchi, A. Leger, M. Vardelle, A. Vardelle and P Sfa Fauchais, Thin Solid Films 305, 35 (1997).CrossRefGoogle Scholar
  3. 3.
    A. Feuerstein, J. Knapp, T. Taylor, A. Ashary, A. Bolcavage and N. Hitchman, Journal of Thermal Spray Technology 17, 199 (2008).CrossRefGoogle Scholar
  4. 4.
    G. Dwivedi, On the Anelastic Behavior of Plasma Sprayed Ceramic Coatings: Observations, Characterizations and Applications, (Stony Brook University, Stony Brook, 2011).Google Scholar
  5. 5.
    N. Curry, Design of Thermal Barrier Coatings, (University West, Trollhättan, 2014).Google Scholar
  6. 6.
    O. Lavigne, M. Poulain, Y. Renollet, C. Rio, P. Moretto, P. Brännvall, J. Wigren, Microstructural characterisation of plasma sprayed thermal barrier coatings by quantitative image analysis, Quantitative Microscopy of High Temperature Materials Conference, November 22–24 1999, Sheffield.Google Scholar
  7. 7.
    A. Allen, J. Ilavsky, G. Long, J. Wallace, C. Berndt and H. Herman, Acta Materialia 49, 1661 (2001).CrossRefGoogle Scholar
  8. 8.
    Z. Wang, A. Kulkarni, S. Deshpande, T. Nakamura and H. Herman, Acta Materialia 51, 5319 (2003).CrossRefGoogle Scholar
  9. 9.
    P. Scardi, M. Leoni and L. Bertamini, Surface and Coatings Technology 76–77, 106 (1995).CrossRefGoogle Scholar
  10. 10.
    D. Schwingel, R. Taylor, T. Haubold, J. Wigren and C. Gualco, Surface and Coatings Technology 108–109, 99 (1998).CrossRefGoogle Scholar
  11. 11.
    M. Friis, C. Persson and J. Wigren, Surface and Coatings Technology 141, 115 (2001).CrossRefGoogle Scholar
  12. 12.
    T. Taylor and I. Ind, US Patent 5,073,433 (17 December 1989).Google Scholar
  13. 13.
    H. Guo, Y. Wang, L. Wang and S. Gong, Journal of Thermal Spray Technology 18, 665 (2009).CrossRefGoogle Scholar
  14. 14.
    H. Guo, R. Vaβen and D. Stöver, Surface and Coatings Technology 186, 353 (2004).CrossRefGoogle Scholar
  15. 15.
    H. Guo, S. Kuroda and H. Murakami, Journal of the American Ceramic Society 89, 1432 (2006).CrossRefGoogle Scholar
  16. 16.
    M. Karger, R. Vaβen and D. Stöver, Surface and Coatings Technology 206, 2011 (16).CrossRefGoogle Scholar
  17. 17.
    H. Guo, H. Murakami and S. Kuroda, Journal of the American Ceramic Society 89, 3797 (2006).CrossRefGoogle Scholar
  18. 18.
    H. Guo, R. Vaβen and D. Stöver, Surface and Coatings Technology 192, 48 (2005).CrossRefGoogle Scholar
  19. 19.
    S. Tsipas and I. Golosnoy, Journal of the European Ceramic Society 31, 2923 (2011).CrossRefGoogle Scholar
  20. 20.
    R. Vaβen, A. Stuke and D. Stöver, Journal of Thermal Spray Technology 18, 181 (2009).CrossRefGoogle Scholar
  21. 21.
    D. Schwingel, R. Taylor, T. Haubold, J. Wigren, C. Gualco, F. Ladru, E. Lugscheider and V. Gourlaouen, in “Thermophysical and mechanical properties of PYZ thick thermal barrier coatings,” Thermal Spray: Meeting the Challenges of the 21st Century, ed. C. Coddet, (ASM International, Nice, 1998),p. 623.Google Scholar
  22. 22.
    Y. Liu, T. Nakamura, V. Srinivasan, A. Vaidya, A. Gouldstone and S. Sampath, Acta Materialia 55, 4667 (2007).CrossRefGoogle Scholar
  23. 23.
    Y. Liu, T. Nakamura, G. Dwivedi, A. Valarezo and S. Sampath, Journal of the American Ceramic Society 91, 4036 (2008).CrossRefGoogle Scholar
  24. 24.
    S. Choi, D. Zhu and R. Miller, Mechanical properties of plasma-sprayed ZrO2-7.5%Y2O3 Thermal Barrier Coatings, NASA/TM-2004-213216, 2004.Google Scholar
  25. 25.
    S. Choi, D. Zhu and R. Miller, Effects of sintering on mechanical and physical properties of plasma-spayed Thermal Barrier Coatings, NASA/TM–2004-212625, 2004.Google Scholar
  26. 26.
    S. Guo and Y. Kagawa, Scripta Materialia 50, 1401 (2004).CrossRefGoogle Scholar
  27. 27.
    T. Cruse, B. Johnsen and A. Nagy, Journal of Thermal Spray Technology 6, 57 (1997).CrossRefGoogle Scholar
  28. 28.
    K. Ma, H. Xie, J. Zhu and H. Wang, Surface and Coatings Technology 253, 58 (2014).CrossRefGoogle Scholar
  29. 29.
    J. Wallace and J. Ilavsky, Journal of Thermal Spray Technology 7, 521 (1998).CrossRefGoogle Scholar
  30. 30.
    J. Singh, M. Sutaria and M. Ferber, Ceramic Engineering and Science Proceedings 18, 191 (1997).CrossRefGoogle Scholar
  31. 31.
    A. Pajares, L. Wei, B. Lawn, N. Padture and C. Berndt, Mater. Sci. Eng. A 208, 158 (1996).CrossRefGoogle Scholar
  32. 32.
    F. Tang and J. Schoenung, Scripta Materialia 54, 1587 (2006).CrossRefGoogle Scholar
  33. 33.
    D. Schwingel, R. Taylor, T. Haubold, J. Wigren and C. Gualco, Surface and Coatings Technology 108, 99 (1998).CrossRefGoogle Scholar
  34. 34.
    F. Tang and J. Schoenung, Scripta Materialia 54, 1587 (2006).CrossRefGoogle Scholar
  35. 35.
    J. Thompson, W. Ji, T. Klocker and T. Clyne, Superalloys, ed. T. M. Pollock et al. (eds) Seven Springs, USA TMS (The Minerals, Metals & Materials Society), p.685 (2000).Google Scholar
  36. 36.
    J. A. Thompson and T. W. Clyne, Acta Materialia 49, 1565 (2001).CrossRefGoogle Scholar
  37. 37.
    D. W. Seo and E. Na, Key Engineering Materials 270–273, 58 (2004).CrossRefGoogle Scholar
  38. 38.
    S. Wei, W. Fu-chi, F. Qun-bo and M. Zhuang, Surface and Coatings Technology 217, 39 (2013).CrossRefGoogle Scholar
  39. 39.
    J. DeMasi, K. Sheffler and M. Oritz, Thermal barrier coating life prediction developement, Phase I, Final Report, NASA Contractor Report, NASA/CR-1989-182230, 1989.Google Scholar
  40. 40.
    M. Beghini, L. Bertini, F. Frendo and E. Giorni, “Determination of thermal sprayed coatings elastic modulus using four point bending test,” in Surface Treatment III: Computer Methods & Experimental Measurements, Hrsg. ed. M. H. Aliabadi, C. A. Brebbia, 1997.Google Scholar
  41. 41.
    H. Eaton and R. Novak, Surface and Coatings Technology 32, 227 (1987).CrossRefGoogle Scholar
  42. 42.
    D. Basu, C. Funke and R. Steinbrech, Journal of Materials Research 14, 4643 (1999).CrossRefGoogle Scholar
  43. 43.
    D. Stöver and C. Funke, Journal of Materials Processing Technology 92, 195 (1999).CrossRefGoogle Scholar
  44. 44.
    S. K. S. Faulhaber, M. Chambers, D. Clarke, C. Levi, J. Hutchinson and A. Evans, Materials Science and Engineering: A 490, 26 (2008).CrossRefGoogle Scholar
  45. 45.
    C. Mercer, S. Faulhaber, A. Evans and R. Darolia, Acta Materialia 53, 1029 (2005).CrossRefGoogle Scholar
  46. 46.
    O. Trunova, T. Beck, R. Herzog, R. Steinbrech and L. Singheiser, Surface and Coatings Technology 202, 5027 (2008).CrossRefGoogle Scholar
  47. 47.
    E. P. Busso, L. Wright, H. E. Evans, L. N. McCartney, S. R. J. Saunders, S. Osgerby and J. Nunn, Acta Materialia 55, 1491 (2007).CrossRefGoogle Scholar
  48. 48.
    W. Nowak, D. Naumenko, G. Mor, F. Mor, D. Mack, R. Vaβen, L. Singheiser and W. Quadakkers, Surface and Coatings Technology 260, 82 (2014).CrossRefGoogle Scholar
  49. 49.
    S. Ahmadian and E. Jordan, Surface and Coatings Technology 244, 109 (2014).CrossRefGoogle Scholar
  50. 50.
    W. Chen, X. Wu and D. Dudzinski, Journal of Thermal Spray Technology 2, 1294 (2012).CrossRefGoogle Scholar
  51. 51.
    M. A. Helminiak, N. Yanar, F. Pettit, T. Taylor and G. Meier, Surface and Coatings Technology 204, 793 (2009).CrossRefGoogle Scholar
  52. 52.
    R. Eriksson, S. Sjostrom, H. Brodin, S. Johanson, L. Ostergren and X. Li, Surface and Coatings Technology 236, 230 (2013).CrossRefGoogle Scholar
  53. 53.
    H. Echsler, V. Shemet, M. Schütze, L. Singheiser and W. J. Quaddakers, Journal of Materials science 41, 1047 (2006).CrossRefGoogle Scholar
  54. 54.
    K. Schlichting, N. Padture, E. Jordan and M. Gell, Materials Science and Engineering: A 342, 120 (2003).CrossRefGoogle Scholar
  55. 55.
    R. Vaβen, S. Giesen and D. Stöver, Journal of Thermal Spray Technology 18, 835 (2009).CrossRefGoogle Scholar
  56. 56.
    Z. Lu, M. Kim, S. Miyoung, Y. Balakrishnan, J. Lee and U. Paik, Materials 6, 3387 (2013).CrossRefGoogle Scholar
  57. 57.
    T. Beck, O. Trunova, R. Herzog and L. Singheiser, Journal of Power and Energy Engineering 7, 647 (2013).Google Scholar
  58. 58.
    Y. Y. Zhang, H. Deng, H. Shi, H. Yu and B. Zong, Surface and Coatings Technology 206, 2977 (2012).CrossRefGoogle Scholar
  59. 59.
    C. Bargraser, P. Mohan, K. Lee, B. Yang, J. Suk, S. Choe and Y. Sohn, Materials Science and Engineering: A 549, 76 (2012).CrossRefGoogle Scholar
  60. 60.
    C.-J. Li, Y. Li and G.-J. Yang, C-X and Li. Journal of Thermal Spray Technology 22, 1374 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Pierre Planques
    • 1
    • 2
    • 3
  • Vanessa Vidal
    • 2
  • Philippe Lours
    • 2
  • Vincent Proton
    • 3
  • Fabrice Crabos
    • 3
  • Julitte Huez
    • 1
  • Bernard Viguier
    • 1
  1. 1.CIRIMAT, Université de Toulouse, CNRS, INPT, UPSToulouse Cedex 04France
  2. 2.CNRS, Mines Albi, INSA, UPS, ISAE; ICA (Institut Clément Ader)Université de ToulouseAlbiFrance
  3. 3.Safran Helicopter EnginesBordesFrance

Personalised recommendations