Advertisement

Oxidation of Metals

, Volume 88, Issue 1–2, pp 121–132 | Cite as

Comparison of Oxidation Behavior of Shot-Peened Plasma Spray Coatings with Cold Gas Dynamic Spray Coatings

  • Kadir Mert Doleker
  • Abdullah Cahit Karaoglanli
Original Paper

Abstract

Atmospheric plasma spray (APS) process is commonly used in the production of TBCs due to low cost, and rapid and easy production. Cold gas dynamic spray (CGDS) method is an emerging coating technology which provides the desired properties such as low porosity, low oxide content, and dense structure for production of ideal metallic bond coat layer compared to APS and the other thermal spray processes. Within the context of this study, shot-peening process was applied to bond coats produced by APS technique in order to improve its microstructural properties like CGDS bond coats. TBCs having APS, CGDS, and shot-peened APS bond coats were isothermally exposed to 1100 °C for 8, 24, 50, and 100 h. Before and after oxidation tests, TBCs were examined and compared in terms of their microstructures and thermally grown oxide layer which forms at the interface of bond and top coats.

Keywords

Oxidation Shot peening Thermal barrier coatings (TBCs) Cold gas dynamic spray (CGDS) 

Notes

Acknowledgements

This investigation was financially supported by The Scientific and Technological Research Council of Turkey (TUBITAK, 111M265) and the research fund of the Bartin University (BAP-2013.1.81). The authors also gratefully acknowledge the Chemnitz University of Technology, Institute of Materials Science and Engineering Department for their helpful technical support.

References

  1. 1.
    R. A. Miller, Journal of Thermal Spray Technology 6, (35–42) 1997.CrossRefGoogle Scholar
  2. 2.
    P. Audigié, S. Selezneff, A. R. V. Put, C. Estournès, S. Hamadi and D. Monceau, Oxidation of Metals 81, (33–45) 2014.CrossRefGoogle Scholar
  3. 3.
    S. Bose, High Temperature Coatings (Elsevier, Burlington, 2007), pp. 253–273.CrossRefGoogle Scholar
  4. 4.
    P. Richer, M. Yandouzi, L. Beauvais and B. Jodoin, Surface and Coatings Technology 204, (3962–3974) 2010.CrossRefGoogle Scholar
  5. 5.
    A. Vande Put, D. Oquab, E. Péré, A. Raffaitin and D. Monceau, Oxidation of Metals 75, (247–279) 2011.CrossRefGoogle Scholar
  6. 6.
    A. C. Karaoglanli, E. Altuncu, I. Ozdemir, A. Turk and F. Ustel, Surface and Coatings Technology 205, (369–373) 2011.CrossRefGoogle Scholar
  7. 7.
    A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pettit, Progress in Materials Science 46, (505–553) 2001.CrossRefGoogle Scholar
  8. 8.
    V. K. Tolpygo and D. R. Clarke, Surface and Coatings Technology 200, (1276–1281) 2005.CrossRefGoogle Scholar
  9. 9.
    Z. Derelioglu, A. L. Carabat, G. M. Song, S. van der Zwaag and W. G. Sloof, Journal of the European Ceramic Society 35, (4507–4511) 2015.CrossRefGoogle Scholar
  10. 10.
    F. Nozahic, D. Monceau and C. Estournès, Materials and Design 94, (444–448) 2016.CrossRefGoogle Scholar
  11. 11.
    K. Ma and J. M. Schoenung, Surface and Coatings Technology 205, (5178–5185) 2011.CrossRefGoogle Scholar
  12. 12.
    W. R. Chen, X. Wu, B. R. Marple, R. S. Lima and P. C. Patnaik, Surface and Coatings Technology 202, (3787–3796) 2008.CrossRefGoogle Scholar
  13. 13.
    G. Pulci, J. Tirillò, F. Marra, F. Sarasini, A. Bellucci, T. Valente and C. Bartuli, Surface and Coatings Technology 268, (198–204) 2015.CrossRefGoogle Scholar
  14. 14.
    C. Zhu, P. Li and X. Y. Wu, Ceramics International 42, (7708–7716) 2016.CrossRefGoogle Scholar
  15. 15.
    K. Dai, J. Villegas, Z. Stone and L. Shaw, Acta Materialia 52, (5771–5782) 2004.CrossRefGoogle Scholar
  16. 16.
    N. L. Liyong, W. U. Zilong and Z. Chungzen, Progress in Natural Science: Materials International 21, (173–179) 2011.CrossRefGoogle Scholar
  17. 17.
    A. Gil, V. Shemet, R. Vassen, M. Subanovic, J. Toscano, D. Naumenko, L. Singheiser and W. J. Quadakkers, Surface and Coatings Technology 201, (3824–3838) 2006.CrossRefGoogle Scholar
  18. 18.
    L. Yong, C. J. Li, L. K. Xing and G. J. Yang, Journal of Thermal Spray Technology 20, (121–131) 2011.CrossRefGoogle Scholar
  19. 19.
    A. Manap, A. Nakano and K. Ogawa, Journal of Thermal Spray Technology 21, (586–596) 2012.CrossRefGoogle Scholar
  20. 20.
    D. Renusch, M. Schorr and M. Schütze, Materials Corrosion 59, (547–555) 2008.CrossRefGoogle Scholar
  21. 21.
    Y. Z. Liu, S. J. Zheng, Y. L. Zhu, H. Wei and X. L. Ma, Journal of the European Ceramic Society 36, (1765–1774) 2016.CrossRefGoogle Scholar
  22. 22.
    H. J. Jang, D. H. Park, Y. G. Jung, J. C. Jang, S. C. Choi and U. Paik, Surface and Coatings Technology 200, (4355–4362) 2006.CrossRefGoogle Scholar
  23. 23.
    M. Saremi, A. Afrasiabi and A. Kobayashi, Transactions of JWRI 36, (41–45) 2007.Google Scholar
  24. 24.
    F. Naeimi, M. R. Rahimipour and M. Salehi, Oxidation of Metals 86, (59–73) 2016.CrossRefGoogle Scholar
  25. 25.
    K. Tao, X. L. Zhou, H. Cui and J. S. Zhang, Transactions of Nonferrous Metals Society of China 19, (1151–1160) 2009.CrossRefGoogle Scholar
  26. 26.
    M. Hasegawa and Y. Kagawa, International Journal of Applied Ceramic Technology 3, (4), (293–301) 2006.CrossRefGoogle Scholar
  27. 27.
    T. Koomparkping, S. Damrongrat and P. Niranatlumpong, Journal of Thermal Spray Technology 14, (264–267) 2004.CrossRefGoogle Scholar
  28. 28.
    Y. Li, C. J. Li, Q. Zhang, G. J. Yang and C. X. Li, Journal of Thermal Spray Technology 19, (1–2), (168–177) 2010.CrossRefGoogle Scholar
  29. 29.
    A. C. Fox and T. W. Clyne, Surface and Coatings Technology 184, (311–321) 2004.CrossRefGoogle Scholar
  30. 30.
    L. Ajdelsztajn, F. Tang, G. E. Kim, V. Provenzano and J. M. Schoenung, Journal of Thermal Spray Technology 14, (23–30) 2003.CrossRefGoogle Scholar
  31. 31.
    K. Yuan, R. Eriksson, R. Peng, X. H. Li, S. Johansson and Y. Wang, Surface and Coatings Technology 232, (204–215) 2013.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kadir Mert Doleker
    • 1
  • Abdullah Cahit Karaoglanli
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringBartin UniversityBartinTurkey

Personalised recommendations