Oxidation of Metals

, Volume 88, Issue 1–2, pp 109–119 | Cite as

Investigation of Isothermal Oxidation Behavior of Thermal Barrier Coatings (TBCs) Consisting of YSZ and Multilayered YSZ/Gd2Zr2O7 Ceramic Layers

  • Kadir Mert Doleker
  • Hayrettin Ahlatci
  • Abdullah Cahit Karaoglanli
Original Paper


Rare-earth zirconates have a big potential as top coat material of TBCs due to their superior high-temperature properties. TBCs are usually produced by thermal spray methods or electron beam physical vapor deposition (EB-PVD) techniques. Cold gas dynamic spray (CGDS) is a promising deposition method for production of dense and non-oxide bond coat compared to other thermal spray processes, while EB-PVD process provides good adhesion and strain tolerance for top coating layers of TBCs. In this study, in order to observe the effect of Gd2Zr2O7 on the oxidation behavior of TBCs, CoNiCrAlY was sprayed on substrate material using the CGDS method, afterward, yttria-stabilized zirconia (YSZ) and YSZ/Gd2Zr2O7 were deposited using EB-PVD technique. After deposition, specimens were isothermally oxidized in a high-temperature furnace at 1100 °C for 8, 24, 50, and 100 h. Microstructures of oxidized samples were examined and thermally grown oxide layer of TBCs were comparatively evaluated.


Gadolinium zirconate (Gd2Zr2O7Cold gas dynamic spray (CGDS) Thermal barrier coatings (TBC) Electron beam physical vapor deposition (EB-PVD) 



This investigation was financially supported by The Scientific and Technological Research Council of Turkey (TUBITAK, 113R049). This study was carried out as a Ph.D. thesis by Kadir Mert Doleker in the Graduate School of Natural and Applied Science at the University of Karabuk, Turkey.


  1. 1.
    J. R. Davis, Handbook of Thermal Spray Technology, (ASM International, Ohio, 2004), pp. 175–185.Google Scholar
  2. 2.
    S. Bose, High Temperature Coatings, (Elsevier, Burlington, 2007), pp. 253–273.CrossRefGoogle Scholar
  3. 3.
    A. Bonadei and T. Marrocco, Surface and Coatings Technology 242, 200–206 (2014).CrossRefGoogle Scholar
  4. 4.
    R. A. Miller, Journal of Thermal Spray Technology 6, 35–42 (1997).CrossRefGoogle Scholar
  5. 5.
    P. Audigié, S. Selezneff, A. R. V. Put, C. Estournès, S. Hamadi and D. Monceau, Oxidation of Metals 81, 33–45 (2014).CrossRefGoogle Scholar
  6. 6.
    T. R. Kakuda, C. G. Levi and T. D. Bennett, Surface and Coatings Technology 272, 350–356 (2015).CrossRefGoogle Scholar
  7. 7.
    A. C. Karaoglanli, K. M. Doleker, B. Demirel, A. Turk and R. Varol, Applied Surface Science 354, 314–322 (2015).CrossRefGoogle Scholar
  8. 8.
    P. Richer, M. Yandouzi, L. Beauvais and B. Jodoin, Surface and Coatings Technology 204, 3962–3974 (2010).CrossRefGoogle Scholar
  9. 9.
    A. C. Karaoglanli, H. Dikici and Y. Kucuk, Engineering Failure Analysis 32, 16–22 (2013).CrossRefGoogle Scholar
  10. 10.
    P. Richer, A. Zúñiga, M. Yandouzi and B. Jodoin, Surface and Coatings Technology 203, 364–371 (2008).CrossRefGoogle Scholar
  11. 11.
    T. Mori, S. Kuroda, H. Murakami, H. Katanoda, Y. Sakamoto and S. Newman, Surface and Coatings Technology 221, 59–69 (2013).CrossRefGoogle Scholar
  12. 12.
    A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pettit, Progress in Materials Science 46, 505–553 (2001).CrossRefGoogle Scholar
  13. 13.
    V. K. Tolpygo and D. R. Clarke, Surface and Coatings Technology 200, 1276–1281 (2005).CrossRefGoogle Scholar
  14. 14.
    Z. Derelioglu, A. L. Carabat, G. M. Song, S. van der Zwaag and W. G. Sloof, Journal of the European Ceramic Society 35, 4507–4511 (2015).CrossRefGoogle Scholar
  15. 15.
    F. Nozahic, D. Monceau and C. Estournès, Materials and Design 94, 444–448 (2016).CrossRefGoogle Scholar
  16. 16.
    L. Gao, H. Guo, S. Gong and H. Xu, Journal of the European Ceramic Society 34, 2553–2561 (2014).CrossRefGoogle Scholar
  17. 17.
    Y. Tamarin, Protective Coatings for Turbine Blades, (ASM International, Ohio, 2002), pp. 5–22.Google Scholar
  18. 18.
    M. Bai, F. Guo and P. Xiao, Ceramics International 40, 16611–16616 (2014).CrossRefGoogle Scholar
  19. 19.
    S. A. Tsipas and I. O. Golosnoy, Journal of the European Ceramic Society 31, 2923–2929 (2011).CrossRefGoogle Scholar
  20. 20.
    Z. H. Xu, X. Zhou, K. Wang, J. W. Dai and L. M. He, Journal of Alloys and Compounds 587, 126–132 (2014).CrossRefGoogle Scholar
  21. 21.
    U. Schulz, B. Saruhan, K. Fritscher and C. Leyens, International Journal of Applied Ceramic Technology 1, 302 (2004).CrossRefGoogle Scholar
  22. 22.
    M. P. Schmitt, A. K. Rai, R. Bhattacharya, D. Zhu and D. E. Wolfe, Surface and Coatings Technology 251, 56–63 (2014).CrossRefGoogle Scholar
  23. 23.
    X. Y. Liu, X. Z. Wang, A. Javed, C. Zhu and G. Y. Liang, Ceramics International 42, 2456–2465 (2016).CrossRefGoogle Scholar
  24. 24.
    M. Frommherz, A. Scholz, M. Oechsner, E. Bakan and R. Vaßen, Surface and Coatings Technology 286, 119–128 (2016).CrossRefGoogle Scholar
  25. 25.
    R. Vaßen, M. O. Jarligo, T. Steinke, D. E. Mack and D. Stöver, Surface and Coating Technology 205, 938 (2010).CrossRefGoogle Scholar
  26. 26.
    B. Saruhan, P. Francois, K. Fritscher and U. Schulz, Surface and Coatings Technology 182, 175–183 (2004).CrossRefGoogle Scholar
  27. 27.
    Z. Xu, L. He, R. Mu, F. Lu, S. He and X. Cao, Journal of Alloys and Compounds 525, 87–96 (2012).CrossRefGoogle Scholar
  28. 28.
    X. Q. Cao, R. Vassen and D. Stoever, Journal of European Ceramic Society 24, 1–10 (2004).CrossRefGoogle Scholar
  29. 29.
    H. Lehmann, D. Pitzer, G. Pracht, R. Vassen and D. Stöver, Journal of Thermal Spray Technology 13, 76–83 (2004).CrossRefGoogle Scholar
  30. 30.
    W. Ma, D. Mack, J. Malzbender, R. Vaßen and D. Stöver, Journal of the European Ceramic Society 28, 3071–3081 (2008).CrossRefGoogle Scholar
  31. 31.
    D. Zhu and R. A. Miller, Low conductivity and sintering-resistant thermal barrier coatings. Google Patents (2004).Google Scholar
  32. 32.
    M. J. Maloney, Thermal barrier coating systems and materials. Google Patents (2001).Google Scholar
  33. 33.
    R. M. Leckie, S. Krämer, M. Rühle and C. G. Levi, Acta Materialia 53, 3281–3292 (2005).CrossRefGoogle Scholar
  34. 34.
    G. Moskal, L. Swadźba, M. Hetmańczyk, B. Witala, B. Mendala, J. Mendala and P. Sosnowy, Journal of the European Ceramic Society 32, 2025–2034 (2012).CrossRefGoogle Scholar
  35. 35.
    X. Q. Cao, R. Vassen, F. Tietz and D. Stoever, Journal of the European Ceramic Society 26, 247–251 (2006).CrossRefGoogle Scholar
  36. 36.
    R. Vassen, F. Traeger and D. Stöver, International Journal of Applied Ceramic Technology 1, 351–361 (2004).CrossRefGoogle Scholar
  37. 37.
    R. Vassen, A. Stuke and D. Stöver, Journal of Thermal Spray Technology 18, 181–186 (2009).CrossRefGoogle Scholar
  38. 38.
    E. Bakan, D. E. Mack, G. Mauer and R. Vaßen, Journal of American Ceramic Society 97, 4045–4051 (2014).CrossRefGoogle Scholar
  39. 39.
    A. C. Fox and T. W. Clyne, Surface and Coating Technology 184, 311–321 (2004).CrossRefGoogle Scholar
  40. 40.
    S. Nath, I. Manna and J. D. Majumdar, Corrosion Science 88, 10–22 (2014).CrossRefGoogle Scholar
  41. 41.
    P. K. Wright and A. G. Evans, Current Opinion in Solid State and Materials Science 4, 255–265 (1999).CrossRefGoogle Scholar
  42. 42.
    W. R. Chen, X. Wu, B. R. Marple and P. C. Patnaik, Surface and Coating Technology 197, 109–115 (2005).CrossRefGoogle Scholar
  43. 43.
    S. Ghosh, Thermal barrier ceramic coatings—a review. in Advanced Ceramic Processing, ed. A. Mohamed (CSIR-Central Glass and Ceramic Research Institute, Kolkata, 2015), pp. 111–138.Google Scholar
  44. 44.
    K. Bobzin, N. Bagcivan, T. Brögelmann and B. Yildirim, Surface and Coatings Technology 237(25), 56–64 (2013).CrossRefGoogle Scholar
  45. 45.
    S. Mahade, R. Li, N. Curry, S. Björklund, N. Markocsan and P. Nylén, International Journal of Applied Ceramic Technology 13, 443–450 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Kadir Mert Doleker
    • 1
    • 2
  • Hayrettin Ahlatci
    • 2
  • Abdullah Cahit Karaoglanli
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringBartin UniversityBartinTurkey
  2. 2.Department of Metallurgical and Materials EngineeringKarabuk UniversityKarabukTurkey

Personalised recommendations