Oxidation of Metals

, Volume 88, Issue 1–2, pp 221–233 | Cite as

Evaluation of the Compatibility of Aluminide Coatings in High-Temperature Sodium for Fast Reactor Application

  • Fabien Rouillard
  • Jean-Louis Courouau
  • Brigitte Duprey
  • Stéphane Mathieu
  • Michel Vilasi
  • Younes Bouizi
  • Germain Boissonnet
  • Fernando Pedraza
  • Ingrid Proriol-Serre
Original Paper
  • 132 Downloads

Abstract

Nickel and iron aluminide coatings were identified as possible candidates for hardfacing materials in Sodium Fast Reactors. Both coatings were developed on two steel grades of interest for the next French Sodium Fast Reactor prototype, 316L(N) and T91. Pack cementation and slurry were employed as aluminization processes. The compatibility of all coatings with purified Na was evaluated at 550 °C for exposure times up to 4250 h. All coatings evidenced high chemical stability in Na even though Na penetration and slow coating dissolution could be evidenced. The penetration depth of Na was observed to depend on the coating nature induced by the deposition process.

Keywords

Sodium Coatings Aluminides Hardfacing 

Notes

Acknowledgements

The authors are very grateful to the working group NEEDS and CEA for their financial support and to M. Tabarant for performing the GDOES analyses.

References

  1. 1.
    R. N. Johnson, R. C. Aungst, N. J. Hoffman, M. G. Cowgill, G. G. Whitlow and W. L. Wilson, Proceeding in First International Conference on Liquid Metal Technology in Energy Production, Champion, ed. M.H. Cooper (1976), p. 122.Google Scholar
  2. 2.
    C. S. Campbell and M. W. J. Lewis, Proceeding in Second International Conference on Liquid Metal Technology in Energy Production, Richland, ed. J.M. Dahlke (1980), p. 3–27.Google Scholar
  3. 3.
    H. Schneider, Proceeding in Second International Conference on Liquid Metal Technology in Energy Production Richland, ed. J.M. Dahlke (1980), p. 3–52.Google Scholar
  4. 4.
    M. W. Lewis and C. S. Campbell, Proceeding in Liquid Metal Engineering and Technology, Oxford, ed. BNES (1984), p. 91.Google Scholar
  5. 5.
    Y. Depierre, S. Albaladejo, P. Latgé and J. Raffailhac, Materials Science And Engineering 88, 1987 (287).CrossRefGoogle Scholar
  6. 6.
    Y. Depierre, CEA Internal Report NT-STML-DIR-96/006 (1996).Google Scholar
  7. 7.
    R. Bassani, M. Meozzi, G. Cai, A. Chiasera, J. Daviot and Y. Depierre, Proceeding in Fourth International Conference on Liquid Metal Engineering and Technology, Avignon, ed. SFEN (1988), p. 12.Google Scholar
  8. 8.
    F. Pedraza, M. Mollard, B. Rannou, J. Balmain, B. Bouchaud and G. Bonnet, Materials Chemistry and Physics 134, (2012).Google Scholar
  9. 9.
    H. Borgstedt and C. K. Mathews, Applied Chemistry of the Alkali Metals, Kluwer/Plenum Publishers, (1987).Google Scholar
  10. 10.
    C. Addison, The Chemistry of the Liquid Alkali Metals, (Wiley, New York, 1984).Google Scholar
  11. 11.
    J. D. Noden, Journal of the British Nuclear Energy Society 12, 1973 (57).Google Scholar
  12. 12.
    J. Guidez and B. Bonin, Réacteurs Nucléaires à Caloporteur Sodium, (2014).Google Scholar
  13. 13.
    J-L. Courouau, F. Balbaud-Célérier, V. Lorentz and T. Dufrenoy, Proceeding in International Congress on Advances in Nuclear Power Plants (ICAPP ‘11), paper 11152, Nice, France, ed. (2011).Google Scholar
  14. 14.
    R. L. Eichelberger, CEA Internal Report AI-AEC-12685 (1968).Google Scholar
  15. 15.
    K. Natesan and T. F. Kassner, Metallurgical Transactions 4, (1973).Google Scholar
  16. 16.
    B. Longson and A. W. Thorley, Journal of Applied Chemistry 20, (1970).Google Scholar
  17. 17.
    D. P. Whittle, D. J. Evans, D. B. Scully and G. C. Wood, Acta Metallurgica 15, (1967).Google Scholar
  18. 18.
    M. C. Galetz, X. Montero, M. Mollard, M. Gunthner, F. Pedraza and M. Schutze, Intermetallics 44, (2014).Google Scholar
  19. 19.
    A. Aguero, R. Muelas, A. Pastor and S. Osgerby, Surface & Coatings Technology 200, (2005).Google Scholar
  20. 20.
    F. Pedraza, M. Proy, C. Boulesteix, P. Krukovskyi and M. Metel, Materials and Corrosion (2016).Google Scholar
  21. 21.
    E. Yoshida, Y. Hirakawa, S. Kano and I. Nihei, Proceeding in Fourth International Conference on Liquid Metal Engineering and Technology, Avignon, ed. SFEN (1988), p. 10.Google Scholar
  22. 22.
    E. Wild, M. Gegenheimer and K. J. Mack, Proceeding in Liquid Metal Engineering and Technology, ed. (1984), p.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Fabien Rouillard
    • 1
  • Jean-Louis Courouau
    • 1
  • Brigitte Duprey
    • 1
  • Stéphane Mathieu
    • 2
  • Michel Vilasi
    • 2
  • Younes Bouizi
    • 2
  • Germain Boissonnet
    • 3
  • Fernando Pedraza
    • 3
  • Ingrid Proriol-Serre
    • 4
  1. 1.Den-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEAUniversité Paris-SaclayGif-sur-YvetteFrance
  2. 2.Institut Jean Lamour, CNRS UMR 7198Université de LorraineVandoeuvre Les NancyFrance
  3. 3.LaSIE, CNRS UMR 7356Université La RochelleLa RochelleFrance
  4. 4.Unité Matériaux et Transformations, UMR CNRS INRA ENSCLUniversité Lille 1Villeneuve d’AscqFrance

Personalised recommendations