Oxidation of Metals

, Volume 88, Issue 1–2, pp 155–164 | Cite as

Fireside Corrosion of Chromium- and Aluminum-Coated Ferritic–Martensitic Steels

  • Diana Fähsing
  • Mario Rudolphi
  • Ludmila Konrad
  • Mathias C. Galetz
Review
  • 117 Downloads

Abstract

In modern fossil power plants, biomass is used more and more as secondary fuel in addition to coal. This leads to a significant decrease of the carbon footprint of such power plants. However, the demands on the corrosion resistance of the materials in the boilers increase because of chlorine in the atmosphere and salt-containing sulfides and chlorides. Heat-resistant ferritic–martensitic steels such as P91 are of great interest as superheater material. However, their corrosion resistance has to be improved for an application in modern fossil power plants with biomass combustion. For this purpose, chromium and aluminum diffusion coatings were developed and applied on P91 steel. The uncoated and coated material was investigated in a simulated biomass–brown coal ash with CaSO4, Na2SO4, K2SO4, KCl, and Al2O3 deposits and an atmosphere containing nitrogen with H2O, CO2, O2, SO2, and HCl. The improvement of the corrosion resistance is illustrated using metallographic methods such as electron probe micro-analysis.

Keywords

Chromium and aluminum diffusion coatings Ferritic–martensitic steels Fireside corrosion 

Notes

Acknowledgements

This work was financially supported by the German Ministry of Economics via IGF-no. 17205N. The authors would like to thank all colleagues from the working group High Temperature Materials at the DECHEMA-Forschungsinstitut for their support.

References

  1. 1.
    P. J. Ennis and W. J. Quadakkers, VGB PowerTech 8, 2001 (87).Google Scholar
  2. 2.
    P. Kofstad, High Temperature Corrosion, (Elsevier Applied Science, London, 1988).Google Scholar
  3. 3.
    E. A. Gulbransen and K. F. Andrew, Journal of The Electrochemical Society 99, 1952 (402).CrossRefGoogle Scholar
  4. 4.
    F. Dettenwanger, M. Schorr, J. Ellrich, T. Weber and M. Schütze, in Lifetime Modelling of High Temperature Corrosion Processes-Proceeding of an EFC workshop, eds. M. Schütze, W. J. Quadakkers, and J. R. Nicholls, (Maney Publishing, London, 2001), p. 206.Google Scholar
  5. 5.
    X. Montero and M. C. Galetz, Oxidation of Metals 83, 2015 (485).CrossRefGoogle Scholar
  6. 6.
    A. Soleimani-Dorcheh, R. N. Durham and M. C. Galetz, Solar Energy Materials and Solar Cells 144, 2016 (109).CrossRefGoogle Scholar
  7. 7.
    J. R. Nicholls, N. J. Simms and A. Encinas-Oropesa, Materials at High Temperatures 24, 2007 (149).CrossRefGoogle Scholar
  8. 8.
    D. Schmidt and M. Schütze, Materials Science Forum 696, 2011 (330).CrossRefGoogle Scholar
  9. 9.
    D. Schmidt, M. Galetz and M. Schütze, Materials at High Temperatures 29, 2012 (159).CrossRefGoogle Scholar
  10. 10.
    P. Huczkowski, Thesis, Universitätsbibliothek, Forschungszentrum Jülich, 2005.Google Scholar
  11. 11.
    W. J. Quadakkers, J. Piron-Abellan, V. Shemet and L. Singheiser, Materials at High Temperatures 20, 2003 (115).Google Scholar
  12. 12.
    L. Singheiser, P. Huczkowski, T. Markus and W. J. Quadakkers, in Shreir’s Corrosion, ed. J. A. R. Editor-in-Chief: Tony, (Elsevier, Oxford, 2010), p. 482.Google Scholar
  13. 13.
    D. Schmidt, M. C. Galetz and M. Schütze, Surface and Coatings Technology 237, 2013 (23).CrossRefGoogle Scholar
  14. 14.
    G. W. Goward, in Proceedings of the Symposium on Properties of High-Temperature Alloys with Emphasis on Environmental Effects, eds. J. K. Tien, and G. S. Ansell, (Academic Press, New York, 1976).Google Scholar
  15. 15.
    G.Y. Lai, in High Temperature Corrosion and Materials Application, ed. G. Y. Lai, (ASM International, Ohio, 2007), Chap. 11, p. 321.Google Scholar
  16. 16.
    ISO 21608: International Standard: Corrosion of metals and alloys-Test method for isothermal-exposure oxidation testing under high-temperature corrosion conditions for metallic materials, No. ISO 21608:2012 (2012).Google Scholar
  17. 17.
    D. Schmidt, M. C. Galetz and M. Schütze, Oxidation of Metals 79, 2013 (589).CrossRefGoogle Scholar
  18. 18.
    ISO 17245: Corrosion of metals and alloys-Test method for high temperature corrosion testing of metallic materials by immersing in molten salt or other liquids under static conditions, No. ISO 17245 (2015).Google Scholar
  19. 19.
    A. Naji, M. C. Galetz and M. Schütze, Materials and Corrosion 66, 2015 (863).CrossRefGoogle Scholar
  20. 20.
    ThyssenKrupp Materials International Datasheet 1.4903 (P91) (2011).Google Scholar
  21. 21.
    Y. S. Touloukian, R. K. Kirby, R. E. Taylor and P. D. Desai, Thermal Expansion of Metallic Elements and Alloy, (Plenum Publishing Corporation, New York, 1970).Google Scholar
  22. 22.
    A. Agüero, R. Muelas, A. Pastor and S. Osgerby, Surface and Coatings Technology 200, 2005 (1219).CrossRefGoogle Scholar
  23. 23.
    A. Agüero and R. Muelas, Materials Science Forum 461–464, 2004 (957).CrossRefGoogle Scholar
  24. 24.
    D. Fähsing, Thesis, RWTH Aachen, SHAKER Verlag, (2016).Google Scholar
  25. 25.
    R. Prescott and M. J. Graham, Oxidation of Metals 38, 1992 (73).CrossRefGoogle Scholar
  26. 26.
    M. Spiegel and E. Strauch, in Solutions to Corrosion Problems: Proceedings of Eurocorr 1998, (Utrecht, 1998).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Diana Fähsing
    • 1
  • Mario Rudolphi
    • 1
  • Ludmila Konrad
    • 1
  • Mathias C. Galetz
    • 1
  1. 1.DECHEMA-ForschungsinstitutFrankfurtGermany

Personalised recommendations