Oxidation of Metals

, Volume 88, Issue 1–2, pp 191–202 | Cite as

Thermal Transport Properties of New Coatings on Steels for Supercritical Steam Power Plants

  • G. Boissonnet
  • C. Boulesteix
  • G. Bonnet
  • J. Balmain
  • F. Pedraza
Original Paper
  • 167 Downloads

Abstract

In order to protect steels from oxidation and corrosion under steam- and fire-side exposures for the next generation of steam turbines, different protective coatings (slurry Al, pack Al, thermal spray CoNiCrAlY, HIPIMS CrN/NbN, sol–gel Al2O3/AlPO4) were assessed on ferritic–martensitic P92 and austenitic HR3C steels. Cyclic oxidation in air at 650 and 700 °C was subsequently conducted for the coatings to grow oxide scales. The thermal transport properties of both the as-deposited and the oxidised coatings were investigated by laser flash analysis till 900 °C to ascertain whether they exhibited any potential harmful insulation to the underlying steel substrate. The results indicated that neither the coatings nor their oxides had any impact on the thermal diffusivity in the temperature range of interest. The thermal diffusivity values were mostly dictated by those of the substrate. It is thus expected that the influence on the thermal transport properties of the coatings under steam conditions will be equivalent than in air.

Keywords

Steels Coatings Oxidation Thermal diffusivity 

Notes

Acknowledgements

The authors gratefully acknowledge the European Union for the funding of FP7 project “POEMA: Production of Coatings for New Efficient and Clean Coal Power Plant Materials” (Grant Agreement No. 310436). Turbocoating, Sheffield Hallam University, BAM and the Chuiko Institute of Surface Chemistry are greatly indebted for supplying the pack Al and CoNiCrAlY, the HIPIMS CrN/NbN and the Al2O3/AlPO4 hybrid sol–gel coatings, respectively.

References

  1. 1.
    G. R. Holcomb, Journal of the Electrochemical Society 156, C292 (2009).CrossRefGoogle Scholar
  2. 2.
    R. Viswanathan, Advanced Materials and Processes 162, 73 (2004).Google Scholar
  3. 3.
    A. Agüero, Energy Materials 3, 35 (2008).CrossRefGoogle Scholar
  4. 4.
    G. R. Holcomb, Oxidation of Metals 69, 163 (2008).CrossRefGoogle Scholar
  5. 5.
    D. J. Young and B. A. Pint, Oxidation of Metals 66, 137 (2006).CrossRefGoogle Scholar
  6. 6.
    P. J. Ennis and W. J. Quadakkers, International Journal of Pressure Vessels and Piping 84, 82 (2007).CrossRefGoogle Scholar
  7. 7.
    W. Schulz, A. Kranzmann, NACE international corrosion conference & expo, “Comparison of the corrosion behaviour of 9–12% Cr steels in H2O, H2O–CO2 and H2O–CO2–O2” (2009).Google Scholar
  8. 8.
  9. 9.
    R. E. Taylor, X. Wang and X. Xu, Surface and Coatings Technology 120–121, 89 (1999).CrossRefGoogle Scholar
  10. 10.
    ASTM E1461-11, “Standard test method for thermal diffusivity by the flash method” (2011).Google Scholar
  11. 11.
    R. E. Taylor, Materials and Science Engineering A245, 160 (1998).CrossRefGoogle Scholar
  12. 12.
    A. Agüero, R. Muelas, M. Gutiérrez, R. Van Vulpen, S. Osgerby and J. P. Banks, Surface and Coatings Technology 201, 6253 (2007).CrossRefGoogle Scholar
  13. 13.
    F. Pedraza, M. Proy, C. Boulesteix, P. Krukovskyi and M. Metel, Materials and Corrosion 67, 1059 (2016).CrossRefGoogle Scholar
  14. 14.
    A. Agüero, M. Gutiérrez and R. Muelas, Material Science Forum 522–523, 205 (2006).CrossRefGoogle Scholar
  15. 15.
    I. G. Wright and B. A. Pint, NACE 02-377, NACE Corrosion 2002, (Denver, 2002).Google Scholar
  16. 16.
    B. Jeyaganesh, International Journal of Thermophysics 30, 619 (2009).CrossRefGoogle Scholar
  17. 17.
    S. Raju, Journal of Nuclear Materials 389, 385 (2009).CrossRefGoogle Scholar
  18. 18.
    Y. S. Touloukian, R. W. Powell, C. Y. Ho and P. G. Klemens, Thermal conductivity, vol. 1&2, (IFI/Plenum, New York, 1970).CrossRefGoogle Scholar
  19. 19.
    L. Pawlowski and P. Fauchais, International Materials Reviews 37, 6, 271 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Laboratoire des Sciences de l’Ingénieur pour l’EnvironnementUniversité de La Rochelle (LaSIE, UMR-CNRS 7356)La Rochelle Cedex 1France

Personalised recommendations