Oxidation of Metals

, Volume 88, Issue 1–2, pp 41–55 | Cite as

Development of the Scale Adhesion Assessment Using a Tensile Testing Machine Equipped with a CCD Camera

  • Thanasak Nilsonthi
  • Wannapha Issaard
  • Somrerk Chandra-ambhorn
Original Paper


The objective of this work was to develop a scale adhesion assessment method by using a tensile testing machine equipped with a CCD camera to instantaneously observe the scale failure during a given exposure. The sample studied was carbon steel oxidised at 900 °C in synthetic air for 2 min, giving the scale thickness of 3.45 μm. The strain initiating the first spallation was determined to semi-quantitatively assess the scale adhesion, which was 3.71 ± 0.86% in the present study. The Galerie–Dupeux model based on U.R. Evans’ criterion was used to quantify the adhesion energy, which was 345 ± 39 J m−2 at the strain initiating the first spallation. However, during the tensile loading the scale spalled with the increased strain and at each strain there existed a particular value of the adhesion energy. To take into account the statistical nature of the scale spallation at different strains with different spallation ratios, the present work proposed the quantification of the average adhesion energy by weighting the adhesion energy at each strain by the increase in the spallation ratio taking place at that strain. Owing to the developed testing method that could record the spallation ratio as a function of the strain, the weighted average adhesion energy at strains up to 10% was quantified giving the value of 530 ± 9 J m−2. This energy represented the scale adhesion characteristics not only at the strain that scale firstly spalled but in a wider range of the imposed strains.


Mechanical adhesion Oxide scale Tensile test 



The authors acknowledge the research grants given by King Mongkut’s University of Technology North Bangkok (contract no. KMUTNB-NEW-59-06 and 57-10-09-217).


  1. 1.
    P. Sarrazin, A. Galerie and J. Fouletier, Mechanisms of high temperature corrosion—a kinetic approach, (Trans Tech Publication, Zurich, 2008).Google Scholar
  2. 2.
    R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 56, 89 (2001).CrossRefGoogle Scholar
  3. 3.
    L. Suarez, R. Petrov, L. Kestens, M. Lamberigts and Y. Houbaert, Materials Science Forum 550, 557 (2007).CrossRefGoogle Scholar
  4. 4.
    K. Ngamkham, N. Klubvihok, J. Tungtrongpairoj and S. Chandra-ambhorn, Steel Research International Metal Forming Special Edition, 991 (2012).Google Scholar
  5. 5.
    S. Taniguchi, K. Yamamoto, D. Megumi and T. Shibata, Materials Science and Engineering A. 308, 250 (2001).CrossRefGoogle Scholar
  6. 6.
    L. Suarez, J. Schneider and Y. Houbaert, Defect and Diffusion Forum 273–276, 655 (2008).Google Scholar
  7. 7.
    Y. L. Yang, C. H. Yang, S. N. Lin, C. H. Chen and W. T. Tsai, Materials Chemistry and Physics 112, 566 (2008).CrossRefGoogle Scholar
  8. 8.
    S. Chandra-ambhorn, T. Nilsonthi, Y. Wouters and A. Galerie, Corrosion Science 87, 101 (2014).CrossRefGoogle Scholar
  9. 9.
    W. Wongpromrat, H. Thaikan, W. Chandra-ambhorn and S. Chandra-ambhorn, Oxidation of Metals 79, 529 (2013).CrossRefGoogle Scholar
  10. 10.
    P. Promdirek, G. Lothongkum, S. Chandra-ambhorn, Y. Wouters and A. Galerie, Oxidation of Metals 81, 315 (2014).CrossRefGoogle Scholar
  11. 11.
    W. Wongpromrat, V. Parry, F. Charlot, A. Crisci, L. Latu-Romain, W. Chandra-ambhorn, S. Chandra-ambhorn, A. Galerie and Y. Wouters, Materials at High Temperature. 32, 22 (2015).CrossRefGoogle Scholar
  12. 12.
    A. Chattopadhyay, N. Bandyopadhyay, A. K. Das and M. K. Panigrahi, Scripta Materialia. 52, 211 (2005).CrossRefGoogle Scholar
  13. 13.
    M. Zhang and G. Shao, Materials Science and Engineering A. 452–453, 189 (2007).Google Scholar
  14. 14.
    S. Chandra-ambhorn, T. Somphakdee and W. Chandra-ambhorn, Materials Science Forum. 696, 156 (2011).CrossRefGoogle Scholar
  15. 15.
    A. Galerie, F. Toscan, E. N’Dah, K. Przybylski, Y. Wouters and M. Dupeux, Materials Science Forum. 461–464, 631 (2004).CrossRefGoogle Scholar
  16. 16.
    M. M. Nagl, W. T. Evans, D. J. Hall and S. R. J. Saunders, Journal de Physique IV. 3, 933 (1993).CrossRefGoogle Scholar
  17. 17.
    M. M. Nagl, S. R. J. Saunders, W. T. Evans and D. J. Hall, Corrosion Science. 35, 965 (1993).CrossRefGoogle Scholar
  18. 18.
    M. M. Nagl, W. T. Evans, D. J. Hall and S. R. J. Saunders, Oxidation of Metals. 42, 431 (1994).Google Scholar
  19. 19.
    M. Rudolphi and M. Schutze, Oxidation of Metals. 79, 167 (2013).CrossRefGoogle Scholar
  20. 20.
    M. Rudolphi and M. Schutze, Oxidation of Metals. 84, 45 (2015).CrossRefGoogle Scholar
  21. 21.
    J. Mougin, M. Dupeux, L. Antoni and A. Galerie, Materials Science and Engineering A. 359, 44 (2003).CrossRefGoogle Scholar
  22. 22.
    F. Toscan, L. Antoni, Y. Wouters, M. Dupeux and A. Galerie, Materials Science Forum. 461–464, 705 (2004).CrossRefGoogle Scholar
  23. 23.
    S. Chandra-ambhorn, F. Roussel-Dherbey, F. Toscan, Y. Wouters, A. Galerie and M. Dupeux, Materials Science and Technology. 23, 497 (2007).CrossRefGoogle Scholar
  24. 24.
    G. Bamba, Y. Wouters, A. Galerie, F. Charlot and A. Dellali, Acta Materialia. 54, 3917 (2006).CrossRefGoogle Scholar
  25. 25.
    S. Chandra-ambhorn, T. Nilsonthi, Y. Madi and A. Galerie, Key Engineering Materials. 410–411, 187 (2009).CrossRefGoogle Scholar
  26. 26.
    S. Chandra-ambhorn and N. Klubvihok, Oxidation of Metals. 85, 103 (2016).CrossRefGoogle Scholar
  27. 27.
    T. Nilsonthi, Key Engineering Materials. 658, 106 (2015).CrossRefGoogle Scholar
  28. 28.
    K. Ngamkham, S. Niltawach and S. Chandra-ambhorn, Key Engineering Materials. 462–463, 407 (2011).CrossRefGoogle Scholar
  29. 29.
    S. Chandra-ambhorn, K. Ngamkham and N. Jiratthanakul, Oxidation of Metals. 80, 61 (2013).CrossRefGoogle Scholar
  30. 30.
    T. Nilsonthi, S. Chandra-ambhorn, Y. Wouters and A. Galerie, Oxidation of Metals. 79, 325 (2013).CrossRefGoogle Scholar
  31. 31.
    T. Nilsonthi, J. Tungtrongpairoj, S. Chandra-ambhorn, Y. Wouters and A. Galerie, Steel Research International, Metal Forming Special Edition, 987 (2012).Google Scholar
  32. 32.
    H. E. Evans, International Materials Review. 40, 1 (1995).CrossRefGoogle Scholar
  33. 33.
    H. E. Evans, Oxidation of Metals. 79, 3 (2013).CrossRefGoogle Scholar
  34. 34.
    N. Birks, G. H. Meier and F. S. Pettit, Introduction to the high-temperature oxidation of metals, (Cambridge University Press, Cambridge, 2006).CrossRefGoogle Scholar
  35. 35.
    M. Krzyzanowski, J. H. Beynon and D. J. J. Farrugia, Oxide scale behavior in high temperature metal processing, (Wiley, Weinheim, 2010).CrossRefGoogle Scholar
  36. 36.
    T. Nilsonthi, Ph.D. Thesis, KMUTNB, Thailand, and University of Grenoble, France, (2013).Google Scholar
  37. 37.
    C.-W. Yang, S.-M. Cho, Y.-H. Kang, J.-S. Lee and J.-W. Park, Materials Science and Engineering A. 556, 246 (2012).CrossRefGoogle Scholar
  38. 38.
    H.-J. Kim, M.-W. Moon, D.-I. Kim, K.-R. Lee and K. H. Oh, Scripta Materialia. 57, 1016 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Thanasak Nilsonthi
    • 1
  • Wannapha Issaard
    • 1
  • Somrerk Chandra-ambhorn
    • 1
  1. 1.High Temperature Corrosion Research Centre, Department of Materials and Production Technology Engineering, Faculty of EngineeringKing Mongkut’s University of Technology North BangkokBangkokThailand

Personalised recommendations