Skip to main content
Log in

Development of the Scale Adhesion Assessment Using a Tensile Testing Machine Equipped with a CCD Camera

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The objective of this work was to develop a scale adhesion assessment method by using a tensile testing machine equipped with a CCD camera to instantaneously observe the scale failure during a given exposure. The sample studied was carbon steel oxidised at 900 °C in synthetic air for 2 min, giving the scale thickness of 3.45 μm. The strain initiating the first spallation was determined to semi-quantitatively assess the scale adhesion, which was 3.71 ± 0.86% in the present study. The Galerie–Dupeux model based on U.R. Evans’ criterion was used to quantify the adhesion energy, which was 345 ± 39 J m−2 at the strain initiating the first spallation. However, during the tensile loading the scale spalled with the increased strain and at each strain there existed a particular value of the adhesion energy. To take into account the statistical nature of the scale spallation at different strains with different spallation ratios, the present work proposed the quantification of the average adhesion energy by weighting the adhesion energy at each strain by the increase in the spallation ratio taking place at that strain. Owing to the developed testing method that could record the spallation ratio as a function of the strain, the weighted average adhesion energy at strains up to 10% was quantified giving the value of 530 ± 9 J m−2. This energy represented the scale adhesion characteristics not only at the strain that scale firstly spalled but in a wider range of the imposed strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Sarrazin, A. Galerie and J. Fouletier, Mechanisms of high temperature corrosion—a kinetic approach, (Trans Tech Publication, Zurich, 2008).

    Google Scholar 

  2. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 56, 89 (2001).

    Article  Google Scholar 

  3. L. Suarez, R. Petrov, L. Kestens, M. Lamberigts and Y. Houbaert, Materials Science Forum 550, 557 (2007).

    Article  Google Scholar 

  4. K. Ngamkham, N. Klubvihok, J. Tungtrongpairoj and S. Chandra-ambhorn, Steel Research International Metal Forming Special Edition, 991 (2012).

  5. S. Taniguchi, K. Yamamoto, D. Megumi and T. Shibata, Materials Science and Engineering A. 308, 250 (2001).

    Article  Google Scholar 

  6. L. Suarez, J. Schneider and Y. Houbaert, Defect and Diffusion Forum 273–276, 655 (2008).

    Google Scholar 

  7. Y. L. Yang, C. H. Yang, S. N. Lin, C. H. Chen and W. T. Tsai, Materials Chemistry and Physics 112, 566 (2008).

    Article  Google Scholar 

  8. S. Chandra-ambhorn, T. Nilsonthi, Y. Wouters and A. Galerie, Corrosion Science 87, 101 (2014).

    Article  Google Scholar 

  9. W. Wongpromrat, H. Thaikan, W. Chandra-ambhorn and S. Chandra-ambhorn, Oxidation of Metals 79, 529 (2013).

    Article  Google Scholar 

  10. P. Promdirek, G. Lothongkum, S. Chandra-ambhorn, Y. Wouters and A. Galerie, Oxidation of Metals 81, 315 (2014).

    Article  Google Scholar 

  11. W. Wongpromrat, V. Parry, F. Charlot, A. Crisci, L. Latu-Romain, W. Chandra-ambhorn, S. Chandra-ambhorn, A. Galerie and Y. Wouters, Materials at High Temperature. 32, 22 (2015).

    Article  Google Scholar 

  12. A. Chattopadhyay, N. Bandyopadhyay, A. K. Das and M. K. Panigrahi, Scripta Materialia. 52, 211 (2005).

    Article  Google Scholar 

  13. M. Zhang and G. Shao, Materials Science and Engineering A. 452–453, 189 (2007).

    Google Scholar 

  14. S. Chandra-ambhorn, T. Somphakdee and W. Chandra-ambhorn, Materials Science Forum. 696, 156 (2011).

    Article  Google Scholar 

  15. A. Galerie, F. Toscan, E. N’Dah, K. Przybylski, Y. Wouters and M. Dupeux, Materials Science Forum. 461–464, 631 (2004).

    Article  Google Scholar 

  16. M. M. Nagl, W. T. Evans, D. J. Hall and S. R. J. Saunders, Journal de Physique IV. 3, 933 (1993).

    Article  Google Scholar 

  17. M. M. Nagl, S. R. J. Saunders, W. T. Evans and D. J. Hall, Corrosion Science. 35, 965 (1993).

    Article  Google Scholar 

  18. M. M. Nagl, W. T. Evans, D. J. Hall and S. R. J. Saunders, Oxidation of Metals. 42, 431 (1994).

    Google Scholar 

  19. M. Rudolphi and M. Schutze, Oxidation of Metals. 79, 167 (2013).

    Article  Google Scholar 

  20. M. Rudolphi and M. Schutze, Oxidation of Metals. 84, 45 (2015).

    Article  Google Scholar 

  21. J. Mougin, M. Dupeux, L. Antoni and A. Galerie, Materials Science and Engineering A. 359, 44 (2003).

    Article  Google Scholar 

  22. F. Toscan, L. Antoni, Y. Wouters, M. Dupeux and A. Galerie, Materials Science Forum. 461–464, 705 (2004).

    Article  Google Scholar 

  23. S. Chandra-ambhorn, F. Roussel-Dherbey, F. Toscan, Y. Wouters, A. Galerie and M. Dupeux, Materials Science and Technology. 23, 497 (2007).

    Article  Google Scholar 

  24. G. Bamba, Y. Wouters, A. Galerie, F. Charlot and A. Dellali, Acta Materialia. 54, 3917 (2006).

    Article  Google Scholar 

  25. S. Chandra-ambhorn, T. Nilsonthi, Y. Madi and A. Galerie, Key Engineering Materials. 410–411, 187 (2009).

    Article  Google Scholar 

  26. S. Chandra-ambhorn and N. Klubvihok, Oxidation of Metals. 85, 103 (2016).

    Article  Google Scholar 

  27. T. Nilsonthi, Key Engineering Materials. 658, 106 (2015).

    Article  Google Scholar 

  28. K. Ngamkham, S. Niltawach and S. Chandra-ambhorn, Key Engineering Materials. 462–463, 407 (2011).

    Article  Google Scholar 

  29. S. Chandra-ambhorn, K. Ngamkham and N. Jiratthanakul, Oxidation of Metals. 80, 61 (2013).

    Article  Google Scholar 

  30. T. Nilsonthi, S. Chandra-ambhorn, Y. Wouters and A. Galerie, Oxidation of Metals. 79, 325 (2013).

    Article  Google Scholar 

  31. T. Nilsonthi, J. Tungtrongpairoj, S. Chandra-ambhorn, Y. Wouters and A. Galerie, Steel Research International, Metal Forming Special Edition, 987 (2012).

  32. H. E. Evans, International Materials Review. 40, 1 (1995).

    Article  Google Scholar 

  33. H. E. Evans, Oxidation of Metals. 79, 3 (2013).

    Article  Google Scholar 

  34. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the high-temperature oxidation of metals, (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  35. M. Krzyzanowski, J. H. Beynon and D. J. J. Farrugia, Oxide scale behavior in high temperature metal processing, (Wiley, Weinheim, 2010).

    Book  Google Scholar 

  36. T. Nilsonthi, Ph.D. Thesis, KMUTNB, Thailand, and University of Grenoble, France, (2013).

  37. C.-W. Yang, S.-M. Cho, Y.-H. Kang, J.-S. Lee and J.-W. Park, Materials Science and Engineering A. 556, 246 (2012).

    Article  Google Scholar 

  38. H.-J. Kim, M.-W. Moon, D.-I. Kim, K.-R. Lee and K. H. Oh, Scripta Materialia. 57, 1016 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the research grants given by King Mongkut’s University of Technology North Bangkok (contract no. KMUTNB-NEW-59-06 and 57-10-09-217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somrerk Chandra-ambhorn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nilsonthi, T., Issaard, W. & Chandra-ambhorn, S. Development of the Scale Adhesion Assessment Using a Tensile Testing Machine Equipped with a CCD Camera. Oxid Met 88, 41–55 (2017). https://doi.org/10.1007/s11085-016-9679-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9679-z

Keywords

Navigation