Advertisement

Oxidation of Metals

, Volume 88, Issue 1–2, pp 15–27 | Cite as

Modelling of the Mechanical Behaviour of a Chromia Forming Alloy Under Thermal Loading

  • Zhaojun Tao
  • Felaniaina Rakotovao
  • Jean-Luc Grosseau-Poussard
  • Benoît Panicaud
  • Guillaume Geandier
  • Pierre-Olivier Renault
  • Philippe Goudeau
  • Nathalie Boudet
  • Nils Blanc
Original Paper

Abstract

When metals or alloys are oxidized at high temperature, an oxide film generally develops. Stress induced by oxide growth may influence the structure and the protective properties of the oxide scales. Classical models (taking into account elasticity and/or viscoplasticity and/or thermal mismatches) are able to predict some stress evolution. Moreover, the origin of that stress for isothermal condition must be sought-after in a growth strain related to the formation of the oxide above the substrate. In the present work, details are given on the modelling of stress under thermal loadings. The study is performed considering different thermomechanical behaviours and upgraded taking into account the origin of the different thermal couplings (weak and strong ones). Therefore, comparison with experimental results performed at ESRF allows extracting thermomechanical parameters with numerical values for different configurations (isothermal or with thermal evolution). This allows also investigating different mechanisms occurring at high temperature in chromia.

Keywords

High-temperature oxidation Strain measurements Optimization Thermal strain Viscoplasticity Creep/relaxation Growth strain Chromium oxide Thermal steps Synchrotron radiation 

Notes

Acknowledgements

The authors are grateful for the provision of the induction furnace by B. Gorges and H. Vitoux, from the Sample Environment Support Service at the European Synchrotron Radiation Facilities, during the run 02-02 821.

References

  1. 1.
    M. Schütze, Protective oxide scales and their breakdown, (Wiley, Chichester, 1991).Google Scholar
  2. 2.
    A. M. Huntz and B. Pieraggi, Oxydation des Matériaux Métalliques, (Hermès Science, Paris, 2003).Google Scholar
  3. 3.
    A. M. Huntz, G. C. Amiri, H. E. Evans and G. Cailletaud, Oxid. Met. 57, 499 (2002).CrossRefGoogle Scholar
  4. 4.
    D. R. Clarke, Acta Mater. 51, 1393 (2003).CrossRefGoogle Scholar
  5. 5.
    B. Panicaud, J. L. Grosseau-Poussard and J. F. Dinhut, Comput. Mater. Sci. 42, 286 (2008).CrossRefGoogle Scholar
  6. 6.
    J. L. Grosseau-Poussard, B. Panicaud and S. Ben, Afia. Comput. Mater. Sci. 71, 47 (2013).CrossRefGoogle Scholar
  7. 7.
    S. Maharjan, X. Zhang and Z. Wang, Oxid. Met. 77, 47 (2012).CrossRefGoogle Scholar
  8. 8.
    J. L. Ruan, Y. Pei and D. Fang, Acta Mech. 223, 12 (2012).CrossRefGoogle Scholar
  9. 9.
    J. R. Vaunois, J. M. Dorvaux, P. Kanouté and J. L. Chaboche, Eur. J. Mech. A/Solid. 42, 402 (2013).CrossRefGoogle Scholar
  10. 10.
    B. Panicaud, J. L. Grosseau-Poussard, M. Kemdehoundja and J. F. Dinhut, Comput. Mater. Sci. 46, 42 (2009).CrossRefGoogle Scholar
  11. 11.
    P. Kofstad, High temperature corrosion, (Elsevier, Angleterre, 1988).Google Scholar
  12. 12.
    D. Faurie, G. Geandier, P. O. Renault, E. Le Bouhris and D. Thiaudière, Thin Solid Film. 530, 29 (2013).CrossRefGoogle Scholar
  13. 13.
    B. W. Veal, A. P. Paulikas and P. Y. Hou, Nat. Mater. 5, 349 (2006).CrossRefGoogle Scholar
  14. 14.
    S. Daghigh, PhD Thesis, Université de Paris-Sud, U.F.R scientifique d’Orsay, 1996.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zhaojun Tao
    • 1
  • Felaniaina Rakotovao
    • 2
  • Jean-Luc Grosseau-Poussard
    • 2
  • Benoît Panicaud
    • 1
  • Guillaume Geandier
    • 3
  • Pierre-Olivier Renault
    • 4
  • Philippe Goudeau
    • 4
  • Nathalie Boudet
    • 5
    • 6
  • Nils Blanc
    • 5
    • 6
  1. 1.Systèmes Mécaniques et d’Ingénierie Simultanée (LASMIS), Institut Charles Delaunay (ICD), CNRS UMR 6281, Université de Technologie de Troyes (UTT)Troyes CedexFrance
  2. 2.Laboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE), CNRS UMR 7356, Université de La RochelleLa Rochelle Cedex 1France
  3. 3.Institut Jean Lamour, CNRS UMR 7198, Université de LorraineNancy CedexFrance
  4. 4.Institut P’, CNRS UPR 3346, Université de PoitiersFuturoscope Chasseneuil CedexFrance
  5. 5.CNRS, Institut NéelGrenoble CedexFrance
  6. 6.Université Grenoble Alpes, Institut NéelGrenoble CedexFrance

Personalised recommendations