Advertisement

Oxidation of Metals

, Volume 86, Issue 1–2, pp 135–149 | Cite as

Long-term Hot Corrosion Behavior of Boiler Tube Alloys in Waste-to-Energy Plants

  • Jing Liu
  • Devy Dyson
  • Edouard Asselin
Original Paper

Abstract

Accelerated corrosion of candidate alloys was induced by metal chlorides/sulfates at 500 °C. Results suggest that the corrosivity of the studied metal chlorides increases in the order CaCl2 < NaCl < KCl < ZnCl2 < PbCl2 < FeCl2. Mechanisms to explain the different impacts of chlorides were proposed. It is believed that materials exposed to chloride salts corrode through vicious cycles, in which a shorter path of the cycle leads to a higher corrosion rate. Experimental results confirmed that FeCl2 with the shortest path of the corresponding vicious cycle has the highest corrosion rate. It is also confirmed that the sulfates of Zn and Pb are less corrosive than their chlorides for the alloys tested. A kinetic study on the hot corrosion of T22, Esshete 1250 and Sanicro 28 was carried out under simulated waste-to-energy (WTE) ashes at 500 °C for 1000 h. Results from the kinetic study show that T22, Esshete 1250, and Sanicro 28 exhibited comparable performance for short-term exposure; however, the degradation thickness presented a clear trend after the 1000-h exposures in terms of decreasing resistance to corrosion: T22 > Esshete 1250 > Sanicro 28. EDX maps confirmed the role of Ni/Cr for slowing the corrosion kinetics of these three alloys.

Keywords

WTE Hot corrosion Candidate alloys Chlorides Sulfates 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada and Nexterra Systems Corporation.

References

  1. 1.
    G. Sorell, Materials at High Temperatures 14, 207 (1997).CrossRefGoogle Scholar
  2. 2.
    M. Spiegel, Materials and Corrosion 50, 373 (1999).CrossRefGoogle Scholar
  3. 3.
    M. Bøjer, P. A. Jensen, F. Frandsen, K. Dam-Johansen, O. H. Madsen and K. Lundtorp, Fuel Processing Technology 89, 528 (2008).CrossRefGoogle Scholar
  4. 4.
    Y.-H. Chang, W. Chen and N. B. Chang, Journal of Hazardous Materials 58, 33 (1998).CrossRefGoogle Scholar
  5. 5.
    D. Mudgal, S. Singh, S. Prakash, International Journal of Corrosion (2014).Google Scholar
  6. 6.
    M. Becidan, L. Sørum, F. Frandsen and A. J. Pedersen, Fuel 88, 595 (2009).CrossRefGoogle Scholar
  7. 7.
    S. Kamal, R. Jayaganthan, S. Prakash and S. Kumar, Journal of Alloys and Compounds 463, 358 (2008).CrossRefGoogle Scholar
  8. 8.
    R. A. Mahesh, R. Jayaganthan and S. Prakash, Journal of Alloys and Compounds 460, 220 (2008).CrossRefGoogle Scholar
  9. 9.
    S. H. Cho, J. M. Hur, C. S. Seo, J. S. Yoon and S. W. Park, Journal of Alloys and Compounds 468, 263 (2009).CrossRefGoogle Scholar
  10. 10.
    S. H. Cho, J. M. Hur, C. S. Seo and S. W. Park, Journal of Alloys and Compounds 452, 11 (2008).CrossRefGoogle Scholar
  11. 11.
    N. Otsuka, Corrosion Science 50, 1627 (2008).CrossRefGoogle Scholar
  12. 12.
    H. Krause, Historical perspective of fireside corrosion problems in refuse-fired boilers, Paper No. 93200, Corrosion/93, NACE International, (1993).Google Scholar
  13. 13.
    P. Henderson, P. Ljung, P. Kallner, J. Tollin, Fireside corrosion of superheater materials in a wood-fired circulating fluidised bed boiler, EUROCORR 2000 conference, September 10-14, 2000, London, published Institute of Materials, Minerals and Mining, London, 2000.Google Scholar
  14. 14.
    S. H. Lee, N. J. Themelis and M. J. Castaldi, Journal of Thermal Spray Technology 16, 104 (2007).CrossRefGoogle Scholar
  15. 15.
    B. J. Skrifvars, R. Backman, M. Hupa, K. Salmenoja and E. Vakkilainen, Corrosion Science 50, 1274 (2008).CrossRefGoogle Scholar
  16. 16.
    B. J. Skrifvars, M. Westén-Karlsson, M. Hupa and K. Salmenoja, Corrosion Science 52, 1011 (2010).CrossRefGoogle Scholar
  17. 17.
    M. Sánchez and M. Pastén, Materials and Corrosion 57, 192 (2006).CrossRefGoogle Scholar
  18. 18.
    C. Chan, C. Q. Jia, J. W. Graydon and D. W. Kirk, Journal of Hazardous Materials 50, 1 (1996).CrossRefGoogle Scholar
  19. 19.
    D. Bankiewicz, Corrosion behaviour of boiler tube materials during combustion of fuels containing Zn and Pb, Academic Dissertation, Åbo Akademi, Faculty of Chemical Engineering, Process Chemistry Centre, Åbo (2012).Google Scholar
  20. 20.
    M. Norell, P. Andersson, Field test of waterwall corrosion in a CFB waste boiler, Paper No. 00236, Corrosion 2000, NACE International (2000).Google Scholar
  21. 21.
    P. Vainikka, S. Enestam, J. Silvennoinen, R. Taipale, P. Yrjas, A. Frantsi, J. Hannula and M. Hupa, Fuel 90, 1101 (2011).CrossRefGoogle Scholar
  22. 22.
    M. Born, VGB Powertech 85, 107 (2005).Google Scholar
  23. 23.
    H. P. Nielsen, F. J. Frandsen and K. Dam-Johansen, Energy & Fuels 13, 1114 (1999).CrossRefGoogle Scholar
  24. 24.
    S. Osada, D. Kuchar and H. Matsuda, Journal of Material Cycles and Waste Management 11, 367 (2009).CrossRefGoogle Scholar
  25. 25.
    S. Karlsson, J. Pettersson, L. G. Johansson and J.-E. Svensson, Oxidation of Metals 78, 83 (2012).CrossRefGoogle Scholar
  26. 26.
    S. Enestam, D. Bankiewicz, J. Tuiremo, K. Mäkelä and M. Hupa, Fuel 104, 294 (2013).CrossRefGoogle Scholar
  27. 27.
    H. Pickering, F. Beck and M. Fontana, Materials Transactions ASM 53, 793 (1961).Google Scholar
  28. 28.
    F. J. Frandsen, A. J. Pedersen, J. Hansen, O. H. Madsen, K. Lundtorp and L. Mortensen, Energy & Fuels 23, 3490 (2009).CrossRefGoogle Scholar
  29. 29.
    Y. L. Zhang and E. Kasai, ISIJ International 44, 1457 (2004).CrossRefGoogle Scholar
  30. 30.
    S. K. Durlak, P. Biswas and J. Shi, Journal of Hazardous Materials 56, 1 (1997).CrossRefGoogle Scholar
  31. 31.
    S. Stucki and A. Jakob, Waste Management (Oxford) 17, 231 (1998).CrossRefGoogle Scholar
  32. 32.
    G. Trouve, A. Kauffmann and L. Delfosse, Waste Management (Oxford) 18, 301 (1998).CrossRefGoogle Scholar
  33. 33.
    I.G. Wright, H.H. Krause, Assessment of factors affecting boiler tube lifetime in waste-fired steam generators: new opportunities for research and technology development, Report No. NREL/TP–430-21480. National Renewable Energy Lab., Golden, CO (United States) (1996).Google Scholar
  34. 34.
    H. Krause, Corrosion by chlorine in waste-fueled boilers, R.W. Bryers (Ed.), Proceedings of the Incinerating Municipal and Industrial Waste—Fireside Problems and Prospect for Improvement Conference, Sheraton Palm Coast, , Hemisphere Press (1989), p. 145.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Materials EngineeringThe University of British ColumbiaVancouverCanada

Personalised recommendations