Oxidation of Metals

, Volume 86, Issue 1–2, pp 59–73 | Cite as

Effect of Sandblasting Process on the Oxidation Behavior of HVOF MCrAlY Coatings

  • Farid Naeimi
  • Mohammad Reza Rahimipour
  • Mehdi Salehi
Original Paper


Surface characteristics, such as topography and roughness (R a), are important in affecting the isothermal oxidation behavior of MCrAlY coatings. In this study, the effect of sandblasting on the oxidation behavior of HVOF thermal-sprayed MCrAlY coatings was investigated. Oxidation tests were conducted under isothermal conditions at 1050 °C for different periods. The R a of the bondcoat was approximately 12 μm. Before and after oxidation, the thermally-grown scale composition and morphology were analyzed using scanning electron microscope (SEM/EDX) and X-ray diffraction. The results showed that the oxide scale that formed on the as-sprayed coatings was a mixture of Al2O3 and spinel, while the oxide formed on the sandblasted coating was composed mainly of Al2O3. In addition, with increasing R a of the bondcoat, the oxidation rate progressively decreased and the amount of Al2O3 increased compared with the as-sprayed coating. Scanning electron microscope analysis showed that the thickness of the scale layer on the sandblasted CoNiCrAlY coating at 1050 °C was much thinner than that on the as-sprayed one.

Graphical Abstract

Isothermal oxidation kinetics of HVOF CoNiCrAlY coatings with different surface modifications at 1050 °C. This figure indicates the effect of the surface process on the oxidation kinetics of the CoNiCrAlY coating at the temperature of 1050 °C. As it can be observed, in both samples, oxidation rate is initially high and gradually lowers with the passage of time. The reason for this reduction in the longer times is the formation of a uniform and dense oxide layer at the beginning of the process within which the rate of oxygen penetration reduces and gets harder with lasting oxidation time. The type of oxidation kinetics of these coatings is parabolic. According to the results obtained, the oxidation rate constant (Kp) for the coating in the as-sprayed and sandblasted states equals 1.75 × 10−13 and 0.63 × 10−13 mg/cm2, respectively. The reduction in the oxidation rate signifies the effect of the surface morphology on the oxidation behavior of these coatings.


MCrAlY coatings Sandblasting Thermally grown oxide (TGO) Surface roughness 



The authors are grateful to the Poudr afshan Company for financial support and their assistance with the HVOF spraying.


  1. 1.
    F. Gao, X. Huang, Q. Yang and R. Liu, Oxidation of Metals, 1 (2015). doi: 10.1007/s11085-015-9604-x.
  2. 2.
    T. Gheno, G. H. Meier and B. Gleeson, Oxidation of Metals 84, 185 (2015). doi: 10.1007/s11085-015-9550-7.CrossRefGoogle Scholar
  3. 3.
    H. M. Tawancy, L. M. Al-Hadhrami, A. I. Mohammed, F. K. Alyousef and H. Dafalla, Oxidation of Metals 83, 417 (2015). doi: 10.1007/s11085-014-9525-0.CrossRefGoogle Scholar
  4. 4.
    H. Lan, P. Y. Hou, Z.-G. Yang, Y.-D. Zhang and C. Zhang, Oxidation of Metals 75, 77 (2010). doi: 10.1007/s11085-010-9221-7.CrossRefGoogle Scholar
  5. 5.
    A. Fossati, M. D. Ferdinando, A. Lavacchi, A. Scrivani, C. Giolli and U. Bardi, Coatings 1, 3 (2010). doi: 10.3390/coatings1010003.CrossRefGoogle Scholar
  6. 6.
  7. 7.
    T. S. Hille, S. Turteltaub and A. S. J. Suiker, Engineering Fracture Mechanics 78, 2139 (2011). doi: 10.1016/j.engfracmech.2011.04.003.CrossRefGoogle Scholar
  8. 8.
    A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pettit, Progress in Materials Science 46, 505 (2001). doi: 10.1016/S0079-6425(00)00020-7.CrossRefGoogle Scholar
  9. 9.
    Y. Bai, et al., Ceramics International 39, 4437 (2013). doi: 10.1016/j.ceramint.2012.11.037.CrossRefGoogle Scholar
  10. 10.
    Y. Li, Y. Xie, L. Huang, X. Liu and X. Zheng, Ceramics International. 38, 5113 (2012). doi: 10.1016/j.ceramint.2012.03.014.CrossRefGoogle Scholar
  11. 11.
    Y. Li, C.-J. Li, Q. Zhang, L.-K. Xing and G.-J. Yang, Journal of Thermal Spray Technology 20, 121 (2010). doi: 10.1007/s11666-010-9590-0.CrossRefGoogle Scholar
  12. 12.
    Z.-H. Zhou, S.-K. Gong, H.-F. Li, H.-B. Xu, C.-G. Zhang and L. Wang, Chinese Journal of Aeronautics 20, 145 (2007). doi: 10.1016/s1000-9361(07)60022-3.CrossRefGoogle Scholar
  13. 13.
    L. Ni and C. Zhou, Progress in Natural Science: Materials International 22, 237 (2012). doi: 10.1016/j.pnsc.2012.04.007.CrossRefGoogle Scholar
  14. 14.
    F. Tang, L. Ajdelsztajn, G. E. Kim, V. Provenzano and J. M. Schoenung, Surface and Coatings Technology 185, 228 (2004). doi: 10.1016/j.surfcoat.2003.11.020.CrossRefGoogle Scholar
  15. 15.
    A. Gil, V. Shemet, R. Vassen, M. Subanovic, J. Toscano, D. Naumenko, L. Singheiser and W. J. Quadakkers, Surface and Coatings Technology 201, 3824 (2006). doi: 10.1016/j.surfcoat.2006.07.252.CrossRefGoogle Scholar
  16. 16.
    W. Brandl, G. Marginean, D. Maghet and D. Utu, Surface and Coatings Technology 188–189, 20 (2004). doi: 10.1016/j.surfcoat.2004.07.111.CrossRefGoogle Scholar
  17. 17.
    L.-Y. Ni and Z.-L. Wu, Progress in Natural Science: Materials International 21, 173 (2011). doi: 10.1016/s1002-0071(12)60052-5.CrossRefGoogle Scholar
  18. 18.
    A. C. Karaoglanli, K. M. Doleker, B. Demirel, A. Turk and R. Varol, Applied Surface Science (2015). doi: 10.1016/j.apsusc.2015.06.113.Google Scholar
  19. 19.
    M. Chen, M. Shen, S. Zhu, F. Wang and X. Wang, Corrosion Science 73, 331 (2013). doi: 10.1016/j.corsci.2013.04.022.CrossRefGoogle Scholar
  20. 20.
    N. Espallargas, in Future Development of Thermal Spray Coatings, ed. N. Espallargas (Woodhead Publishing, Cambridge, 2015), p. 1.CrossRefGoogle Scholar
  21. 21.
    J. He and J. M. Schoenung, Materials Science and Engineering: A 336, 274 (2002). doi: 10.1016/S0921-5093(01)01986-4.CrossRefGoogle Scholar
  22. 22.
    K. Tao, X.-L. Zhou, H. Cui and J.-S. Zhang, Transactions of Nonferrous Metals Society of China 19, 1151(2009). doi: 10.1016/S1003-6326(08)60421-5.CrossRefGoogle Scholar
  23. 23.
    D. Toma, W. Brandl and U. Köster, Surface and Coatings Technology 120–121, 8 (1999). doi: 10.1016/S0257-8972(99)00332-1.CrossRefGoogle Scholar
  24. 24.
    Q. Wei, Z. Yin and H. Li, Applied Surface Science 258, 5094 (2012).CrossRefGoogle Scholar
  25. 25.
    S. R. J. Saunders, M. Monteiro and F. Rizzo, Progress in Materials Science 53, 775 (2008). doi: 10.1016/j.pmatsci.2007.11.001.CrossRefGoogle Scholar
  26. 26.
    Z. Xu, G. Huang, L. He, R. Mu, K. Wang and J. Dai, Journal of Alloys and Compounds 586, 1 (2014). doi: 10.1016/j.jallcom.2013.09.210.CrossRefGoogle Scholar
  27. 27.
    A. Hesnawi, H. Li, Z. Zhou, S. Gong and H. Xu, Surface and Coatings Technology 201, 6793 (2007). doi: 10.1016/j.surfcoat.2006.09.076.CrossRefGoogle Scholar
  28. 28.
    A. C. Karaoglanli, K. M. Doleker, B. Demirel, A. Turk and R. Varol, Applied Surface Science (2015). doi: 10.1016/j.apsusc.2015.06.113.Google Scholar
  29. 29.
    K. Ma and J. M. Schoenung, Surface and Coatings Technology 205, 5178 (2011). doi: 10.1016/j.surfcoat.2011.05.025.CrossRefGoogle Scholar
  30. 30.
    X. C. Zhang, B. S. Xu, H. D. Wang and Y. X. Wu, Materials & Design 27, 989 (2006). doi: 10.1016/j.matdes.2005.02.008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Farid Naeimi
    • 1
  • Mohammad Reza Rahimipour
    • 1
  • Mehdi Salehi
    • 2
  1. 1.Ceramic DepartmentMaterials and Energy Research Center (MERC)KarajIran
  2. 2.Materials Eng. DepartmentIsfahan University of TechnologyIsfahanIran

Personalised recommendations