Skip to main content
Log in

Spallation Behaviour of Alumina Scale Formed on FeCrAlY Alloy After Isothermal Oxidation

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The spallation behaviour of alumina scales grown on FeCrAlY alloy was investigated. Substrates with different thicknesses were oxidized at 1200 °C for 25 h and cooled at various cooling rates. Generally, the scale formed on a thicker substrate or with a faster cooling rate exhibits a larger compressive stress. However, the failure behaviour of alumina scales is more complicated than expected for a compressed film. Specifically, (i) the extent of the spallation is not proportional to the residual stress in the oxide; (ii) the spallation does not occur immediately after cooling, but requires a period of incubation. This indicates that the residual stress is not the sole reason for the failure of scales. It was found that the carbide forms at the oxide–metal interface after cooling, which acts in conjunction with the residual stress to control the spallation of oxides. In addition, the mechanics analysis suggests that the microscopic roughness at the interface is another important factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F. H. Stott, G. C. Wood and J. Stringer, Oxidation of Metals 44, 113 (1995).

    Article  Google Scholar 

  2. V. K. Tolpygo, J. R. Dryden and D. R. Clarke, Acta Materialia 46, 927 (1998).

    Article  Google Scholar 

  3. V. K. Tolpygo and D. R. Clarke, Materials Science and Engineering A 278, 142 (2000).

    Article  Google Scholar 

  4. C. Zhu, X. F. Zhao, I. S. Molchana, G. E. Thompsona, G. Y. Liang and P. Xiao, Materials Science and Engineering A 528, 8687 (2011).

    Article  Google Scholar 

  5. P. Y. Hou, Materials and Corrosion 51, 329 (2000).

    Article  Google Scholar 

  6. P. Y. Hou, Journal of Material Science Letters 19, 577 (2000).

    Article  Google Scholar 

  7. P. Y. Hou and J. Moskito, Oxidation of Metals 59, 559 (2003).

    Article  Google Scholar 

  8. V. K. Tolpygo and H. Viefhaus, Oxidation of Metals 52, 1 (1999).

    Article  Google Scholar 

  9. J. W. Hutchinson and Z. Suo, Advances in Applied Mechanics 29, 63 (1992).

    Article  Google Scholar 

  10. J. L. Smialek, Materials Science and Engineering A 332, 11 (2002).

    Article  Google Scholar 

  11. J. L. Smialek, JOM. 58, 29 (2006).

    Article  Google Scholar 

  12. J. L. Smialek, Materials Science Forum 595–598, 191 (2008).

    Article  Google Scholar 

  13. J. L. Smialek, D. M. Zhu and M. D. Cuy, Scripta Materialia 59, 67 (2008).

    Article  Google Scholar 

  14. J. L. Smialek and B. A. Pint, Materials Science Forum 369–372, 459 (2001).

    Article  Google Scholar 

  15. W. Zhang, J. R. Smith, X. G. Wang and A. G. Evans, Physical Review B 67, 245414 (2003).

    Article  Google Scholar 

  16. X. G. Wang and J. R. Smith, Physical Review B 70, 081401 (2004).

    Article  Google Scholar 

  17. V. Kochubey, D. Naumenko, E. Wessel, J. Le Coze, L. Singheiser, H. Al-Badairy, G. J. Tatlock and W. J. Quadakkers, Materials Letters 60, 1654 (2006).

    Article  Google Scholar 

  18. D. M. Lipkin and D. R. Clarke, Oxidation of Metals 45, 267 (1996).

    Article  Google Scholar 

  19. X. Zhao, J. Liu, D. S. Rickerby, R. J. Jones and P. Xiao, Acta Materialia 59, 6401 (2011).

    Article  Google Scholar 

  20. V. K. Tolpygo and D. R. Clarke, Materials Science and Engineering A 278, 151 (2000).

    Article  Google Scholar 

  21. M. Y. He, A. G. Evans and J. W. Hutchinson, Materials Science and Engineering A 245, 168 (1998).

    Article  Google Scholar 

  22. V. Kochubey, D. Naumenko, E. Wessel, J. Le Coze, L. Singheiser, H. Al-Badairy, G. J. Tatlock and W. J. Quadakkers, Materials Letters 60, 1564 (2006).

    Article  Google Scholar 

  23. P. Y. Hou and J. Stringer, Oxidation of Metals 38, 323 (1992).

    Article  Google Scholar 

  24. P. Y. Hou, Annual Review of Materials Research 38, 275–298 (2008).

    Article  Google Scholar 

  25. P. Y. Hou and G. D. Ackerman, Applied Surface Science 178, 156 (2001).

    Article  Google Scholar 

  26. X. Y. Gong and D. R. Clarke, Oxidation of Metals 50, 355 (1998).

    Article  Google Scholar 

  27. V. K. Tolpygo and D. R. Clarke, Acta Materialia 46, 5153 (1998).

    Article  Google Scholar 

  28. M. Nicholas, Journal of Materials Science 3, 571 (1968).

    Article  Google Scholar 

  29. V. K. Tolpygo and D. R. Clarke, Acta Materialia 46, 5167 (1998).

    Article  Google Scholar 

  30. M. Y. He, A. G. Evans and J. W. Hutchinson, Acta Materialia 48, 2593 (2000).

    Article  Google Scholar 

  31. A. G. Evans, M. Y. He and J. W. Hutchinson, Acta Materialia 45, 3543 (1997).

    Article  Google Scholar 

  32. J. P. Buban, K. Matsunaga, J. Chen, N. Shibata, W. Y. Ching, T. Yamamoto and Y. Ikuhara, Science 311, 212 (2006).

    Article  Google Scholar 

  33. S. K. Sharma, G. D. Ko and K. J. Kang, Journal of the European Ceramic Society 29, 355 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would thank the financial support from the “1000 Plan Program”, the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No. SHDP201303), the National Natural Science Foundation of China (No. 51271120 and No. 51401170) and the Key Program for Basic Research of Shanghai Science and Technology Committee (No. 12DJ1400400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Zhao, X., Chen, Y. et al. Spallation Behaviour of Alumina Scale Formed on FeCrAlY Alloy After Isothermal Oxidation. Oxid Met 85, 391–408 (2016). https://doi.org/10.1007/s11085-015-9602-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9602-z

Keywords

Navigation