Advertisement

Oxidation of Metals

, Volume 85, Issue 1–2, pp 3–16 | Cite as

Corrosion of Pure Cr and Ni–30Cr Alloy by Soda–Lime–Silicate Melts: Study of Simplified Systems

  • T. K. Abdullah
  • C. Petitjean
  • P. J. Panteix
  • E. Schmucker
  • C. Rapin
  • M. Vilasi
Original Paper

Abstract

The corrosion characteristics of model chromia-forming alloys (i.e. pure Cr and Ni–30 wt%Cr alloy) were studied in molten soda–lime–silicate (i.e. Na2O–CaO–xSiO2, x = 3 or 6, molar composition) at 1100 and 1150 °C using electrochemical techniques coupled with ex situ observations. High Cr activity of pure Cr led to high corrosion rates and also the inability of the material to develop a long term protective oxide scale after a preoxidation treatment. By contrast, the Cr2O3 scale built on preoxidized Ni–30Cr exhibited a protective behavior at 1100 °C. The variation of basicity of the silicate melts showed a minor influence on the corrosion behavior of both materials. An increase in the temperature up to 1150 °C led to higher solubility of Cr2O3, and thus did not allow the growth of a protective oxide scale on Ni–30Cr.

Keywords

Corrosion Molten soda–lime–silicate Electrochemistry Basicity Cr activity 

Notes

Acknowledgments

The authors are grateful to SCMEM (Service Commun de Microscopies Electroniques et de Microanalyses X, Université de Lorraine) for EPMA and SEM analyses, and to N. David for thermodynamical calculations.

References

  1. 1.
    W. D. Kaplan, D. Chatain, P. Wynblatt and W. Craig Carter, Journal of Materials Science 45, 5681 (2013).CrossRefGoogle Scholar
  2. 2.
    J. Pech, M. Braccini, A. Mortensen and N. Eustathopoulos, Materials Science and Engineering A 384, 117 (2004).CrossRefGoogle Scholar
  3. 3.
    D. Zhong, E. Mateeva, I. Dahan, J. J. Moore, G. G. W. Mustoe, T. Ohno, J. Disam and S. Thiel, Surface and Coatings Technology 133–134, 8 (2000).CrossRefGoogle Scholar
  4. 4.
    A. Roth, Vacuum Sealing Techniques, (American Institute of Physics, New York, 1997).Google Scholar
  5. 5.
    J. Di Martino, C. Rapin, P. Berthod, R. Podor and P. Steinmetz, Corrosion Science 46, 1849 (2004).CrossRefGoogle Scholar
  6. 6.
    B. Gaillard-Allemand, Etude de la corrosion de matériaux métalliques et céramiques par le verre de confinement des déchets nucléaires fondu, PhD Thesis, Université Henri Poincaré (2001).Google Scholar
  7. 7.
    D. Lizarazu, P. Steinmetz and J. L. Bermard, Materials Science Forum 251–254, 709 (1997).CrossRefGoogle Scholar
  8. 8.
    D. Lizarazu, P. Steinmetz and J. L. Bermard, Fundamentals of Glass Science and Technology 597, (Glafo, The Glass Research Institute, Vaxjo, 1997).Google Scholar
  9. 9.
    A. Carton, C. Rapin, R. Podor and P. Berthod, Journal of the Electrochemical Society 153, (3), B121 (2006).CrossRefGoogle Scholar
  10. 10.
    S. Abdelouhab, C. Rapin, R. Podor, P. Berthod and M. Vilasi, Journal of the Electrochemical Society 154, (9), C500 (2007).CrossRefGoogle Scholar
  11. 11.
    J. Di Martino, C. Rapin, P. Berthod, R. Podor and P. Steinmetz, Corrosion Science 46, 1865 (2004).CrossRefGoogle Scholar
  12. 12.
    H. Khedim, R. Podor, P. J. Panteix, C. Rapin and M. Vilasi, Journal of Non-Crystalline Solids 356, 2734 (2010).CrossRefGoogle Scholar
  13. 13.
    H. Khedim, T. K. Abdullah, R. Podor, P. J. Panteix, C. Rapin and M. Vilasi, Journal of the American Ceramic Society 93, (5), 1347 (2010).Google Scholar
  14. 14.
    FactSage 6.4. www.factsage.com. Accessed July 2014.
  15. 15.
    T. K. Abdullah, C. Petitjean, P. J. Panteix, C. Rapin, M. Vilasi, H. Zuhailawati, and A. Abdul Rahim, Corrosion Science (2014, submitted).Google Scholar
  16. 16.
    C. Petitjean, P. J. Panteix, C. Rapin, M. s and R. Podor, Procedia Materials Science 7, 101 (2014).CrossRefGoogle Scholar
  17. 17.
    L. Karmazin, Materials Science and Engineering 54, 247 (1982).CrossRefGoogle Scholar
  18. 18.
    www.thermocalc.com. Accessed July 2014.
  19. 19.
    P. Kofstad, High Temperature Corrosion, (Elsevier Applied Science, London, 1988).Google Scholar
  20. 20.
    T. K. Abdullah, Study of the Redox and Acid-Base Properties of Soda–Lime–Silicate Glass: Application to the High Temperature Corrosion of Ni-Based Alloys and Ceramic Materials, PhD Thesis, Université de Lorraine (2013).Google Scholar
  21. 21.
    J. A. Duffy, Geochimica et Cosmochimica Acta 57, 3961 (1993).CrossRefGoogle Scholar
  22. 22.
    K. P. Lillerund and P. Kofstad, Journal of the Electrochemical Society 127, (11), 2397 (1980).CrossRefGoogle Scholar
  23. 23.
    P. Kofstad and K. P. Lillerund, Journal of the Electrochemical Society 127, (11), 2410 (1980).CrossRefGoogle Scholar
  24. 24.
    T. Hodgkiess, G. C. Wood, D. P. Whittle and B. D. Bastow, Oxidation of Metals 14, (3), 263 (1980).CrossRefGoogle Scholar
  25. 25.
    T. K. Abdullah, C. Petitjean, P. J. Panteix, C. Rapin, M. Vilasi, H. Zuhailawati and A. Abdul Rahim, Materials Chemistry and Physics 142, 572 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • T. K. Abdullah
    • 1
  • C. Petitjean
    • 2
  • P. J. Panteix
    • 2
  • E. Schmucker
    • 2
  • C. Rapin
    • 2
  • M. Vilasi
    • 2
  1. 1.School of Materials and Mineral Resources EngineeringUniversiti Sains MalaysiaNibong TebalMalaysia
  2. 2.Institut Jean Lamour (UMR CNRS 7198)Université de LorraineVandoeuvre les Nancy CedexFrance

Personalised recommendations