Advertisement

Oxidation of Metals

, Volume 85, Issue 3–4, pp 221–229 | Cite as

Transient Oxidation of a Nickel-Base Superalloy with Varying Oxygen Partial Pressure

  • Jinesung Jung
  • Barbara Shollock
  • Keun-bong Yoo
Original Paper

Abstract

The transient oxidation behaviour of a nickel-base superalloy in different oxygen partial pressures studied using electron and ion microscopy showed that at high pO2, a triple-layered oxide developed: outer nickel oxide, then a complex aluminium-chromium oxide, and inner alumina layer. Lower pO2 produced only alumina, as reduced oxygen activity suppressed nickel oxide formation. An aluminium-depleted region in the alloy with width proportional to pO2 was observed.

Keywords

Nickel alloy Oxidation SIMS SEM 

References

  1. 1.
    A. D. Cetel and D. N. Duhl, Superalloys, (The Metallurgical Society, Warrendale, 1988).Google Scholar
  2. 2.
    A. Akhtar, M. S. Hook and R. C. Reed, Metallurgical and Materials Transactions 36A, 3001 (2005).CrossRefGoogle Scholar
  3. 3.
    D. A. Ford, K. P. Fullagar, H. K. Bhangu, M. C. Thomas, P. S. Burkholder, P. S. Korinko, K. Harris and J. B. Wahl, ASME Transactions 121, 138 (1999).Google Scholar
  4. 4.
    J. Jedlinski, A. Bernasik, M. J. Graham, D. F. Mitchell, G. I. Sproule and G. Borchardt, Materials and Corrosion 46, 297 (1995).CrossRefGoogle Scholar
  5. 5.
    F. Qin, J. W. Anderegg, C. J. Anderegg, J. Jenks, B. Gleeson, D. J. Sordelet and P. A. Theil, Surface Science 602, 205 (2008).CrossRefGoogle Scholar
  6. 6.
    T. J. Nijdam, L. P. H. Jeurgens and W. G. Sloof, Materials at High Temperatures 20, 311 (2003).CrossRefGoogle Scholar
  7. 7.
    C. Sarioglu, C. Stinner, J. R. Blachere, N. Birks, F. S. Pettit, G. H. Meier and J. L. Smialek, Superalloys 96, 71 (1996).Google Scholar
  8. 8.
    K. Harris and J. B. Wahl, Superalloys, (TMS, Warrendale, 2004), p. 45.Google Scholar
  9. 9.
    H. J. Grabke, Intermetallics 7, 1153 (1999).CrossRefGoogle Scholar
  10. 10.
    B. A. Pint, A. J. Garratt Reed and L. W. Hobbs, Oxidation of Metals 56, 119 (2001).CrossRefGoogle Scholar
  11. 11.
    F. H. Stott, C. G. Wood and J. Stringer, Oxidation of Metals 44, 133 (1995).CrossRefGoogle Scholar
  12. 12.
    F. S. Pettit and C. S. Giggins, Electrochemical Society 118, 1782 (1971).CrossRefGoogle Scholar
  13. 13.
    H. J. T. Ellingham, The Journal of the Society of Chemical Industry 63, 125 (1944).CrossRefGoogle Scholar
  14. 14.
    P. Kofstad, High Temperature Corrosion, (Elesvier Applied Science, London, 1988).Google Scholar
  15. 15.
    T. F. An, H. R. Guan, X. F. Sun and Z. Q. Hu, Oxidation of Metals 54, 301 (2000).CrossRefGoogle Scholar
  16. 16.
    S. B. Jung, T. Y. Yamane, Y. Minamino, K. Hirao, H. Araki and S. J. Saji, Journal of Materials Science Letters 211, 1333 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Power Generation LabResearch Institute of KEPCODaejeonKorea
  2. 2.WMG, International Manufacturing CenterUniversity of WarwickCoventryUK

Personalised recommendations