Advertisement

Oxidation of Metals

, Volume 84, Issue 3–4, pp 413–427 | Cite as

Residual Stress Analysis Due to Chemomechanical Coupled Effect, Intrinsic Strain and Creep Deformation During Oxidation

  • Yaohong Suo
  • Xiaoxiang Yang
  • Shengping Shen
Original Paper

Abstract

Metal oxidation at high temperature is often accompanied with the stress generation both in the metal substrate and the growing oxide scale. In this paper, taking into account the growth strain, intrinsic strain and creep deformation, a new analysis model to characterize the residual stress evolutions during an isothermal oxidation process is developed on the basis of the mechanical-balance and moment-equilibrium equations. In this model, the growth strain and the stress are coupled based on an evolving equation, which reduces to the Clarke’s assumption if the stress influence on the growth strain of the oxide scale is ignored. The curvature describing the bending of the system is expressed. Euler numerical method is adopted to simulate the stress evolution and the comparisons among the present model, Zhang’s creep solution and the experimental results are also performed. Finally, effects of creep constants, substrate thickness and intrinsic strain on the residual stress distribution in the oxide scale/metal substrate are discussed.

Keywords

High temperature oxidation Residual stress Chemomechanical coupling Intrinsic strain Creep deformation 

Notes

Acknowledgments

The supports from NSFC (Grants Nos. 11372238, 11302161, 11402054 and 11321062), Project Funded by China Postdoctoral Science Foundation (No. 2015M570552) and Scientific Research Program Funded by Shaanxi Provincial Education Commission (No. 13JK0611) are appreciated.

References

  1. 1.
    Y. Huang and A. J. Rosakis, J. Mech. Phys. Solids. 53, 2483–2500 (2005).CrossRefGoogle Scholar
  2. 2.
    M. A. Brown, A. J. Rosakis, X. Feng, Y. Huang and E. Üstündag, Int. J. Solids Struct. 44, 1755–1767 (2007).CrossRefGoogle Scholar
  3. 3.
    A. Saillard, M. Cherkaoui, L. Capolungo and E. P. Busso, Philos. Mag. 90, 2651 (2010).Google Scholar
  4. 4.
    H. E. Evans, Stress effects in high temperature oxidation of metals. Int. mater. Rev. 40, 1 (1995).CrossRefGoogle Scholar
  5. 5.
    D. R. Clarke, Acta Mater. 51, 1393 (2003).CrossRefGoogle Scholar
  6. 6.
    B. Panicaud, J. L. Grossard-Poussard and J. F. Dinhut, Appl. Surf. Sci. 252, 5700 (2006).CrossRefGoogle Scholar
  7. 7.
    N. B. Pilling and R. E. Bedworth, J. Inst. Met. 29, 529 (1923).Google Scholar
  8. 8.
    F. N. Rhines and J. S. Wolf, Metall. Trans. 1, 1701 (1970).CrossRefGoogle Scholar
  9. 9.
    V. Tolpygo, J. Dryden and D. R. Clarke, Acta Mater. 46, 927 (1998).CrossRefGoogle Scholar
  10. 10.
    S. Maharjan, X. C. Zhang, F. Z. Xuan, Z. D. Wang and S. T. Tu, J. Appl. Phys. 110, 063511 (2011).Google Scholar
  11. 11.
    J. L. Ruan, Y. M. Pei and D. N. Fang, Acta Mech. 223, 2597(2012).CrossRefGoogle Scholar
  12. 12.
    Q. Q. Chen, F. Z. Xuan and S. T. Tu, Mater. Sci. Eng. A. 497, 471 (2008).CrossRefGoogle Scholar
  13. 13.
    B. Panicaud, J. Grosseau-Poussard and J. F. Dinhut, Comput. Mater. Sci. 42, 286 (2008).CrossRefGoogle Scholar
  14. 14.
    S. Maharjan, X. C. Zhang and Z. D. Wang, J. Appl. Phys. 112, 033514 (2012).Google Scholar
  15. 15.
    H. L. Wang, Y. H. Suo and S. P. Shen, Oxid. Met. 83, 507 (2015).CrossRefGoogle Scholar
  16. 16.
    L. C. Stephen, Nature 487, 176 (2012).CrossRefGoogle Scholar
  17. 17.
    C. R. Hickenboth and J. Moore, Nature 446, 423 (2007).CrossRefGoogle Scholar
  18. 18.
    T. J. Delph, J. Appl. Phys. 83, 786 (1998).CrossRefGoogle Scholar
  19. 19.
    H. E. Evans, D. J. Norfolk and T. Swan, J. Electrochem. Soc. 125, 1180 (1978).CrossRefGoogle Scholar
  20. 20.
    Y. H. Suo and S. P. Shen, J. Appl. Phys. 114, 164905 (2013).Google Scholar
  21. 21.
    H. Miura, H. Ohta, N. Okamoto and T. Kaga, Appl. Phys. Lett. 60, 2746 (1992).CrossRefGoogle Scholar
  22. 22.
    E. Kobeda and E. A. Irene, J. Vac. Sci. Technol. B6, 574 (1998).Google Scholar
  23. 23.
    S. R. J. Saunders, H. E. Evans, M. Li, D. D. Gohil and S. Osgerby, Oxid. Met. 48, 189 (1997).CrossRefGoogle Scholar
  24. 24.
    D. R. Clarke, Curr. Opin. Solid State Mater. Sci. 6, 237 (2002).CrossRefGoogle Scholar
  25. 25.
    S. L. Hu and S. P. Shen, Acta Mech. 224, 2895 (2013).CrossRefGoogle Scholar
  26. 26.
    X. L. Dong, X. Feng and K. C. Hwang, J. Appl. Phys. 112, 023502 (2012).Google Scholar
  27. 27.
    X. C. Zhang, B. S. Xu, H. D. Wang and Y. X. Wu, J. Appl. Phys. 101, 083530 (2007).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Mechanical Engineering and AutomationFuzhou UniversityFuzhouChina
  2. 2.School of ScienceXi’an University of Science and TechnologyXi’anChina
  3. 3.State Key Lab for Strength and Vibration of Mechanical Structures, School of AerospaceXi’an Jiaotong UniversityXi’anChina

Personalised recommendations