Oxidation of Metals

, Volume 84, Issue 3–4, pp 241–257 | Cite as

The Influence of Cr Evaporation on Long Term Cr Depletion Rates in Ferritic Stainless Steels

  • R. Sachitanand
  • J-E Svensson
  • J. Froitzheim
Original Paper


It is shown that well defined flow rates are an essential parameter in oxidation experiments influenced by scale volatilisation. The 22 % Cr ferritic steel Sanergy HT, intended for use as an SOFC interconnect material, was exposed discontinuously over 3100 h at 850 °C in air + 3 % H2O @ 6000 sml min−1 (27 cm s−1) and stagnant conditions in a tubular reactor. Time resolved isothermal Cr evaporation measurements over 1000 h were also performed in the 6000 sml min−1 case while the stagnant exposure environment was saturated in Cr(VI) species to suppress any evaporation reactions. Mass balances based on oxidation and evaporation data were in good agreement with SEM/EDX bulk Cr concentration measurements. The time to a bulk concentration of 15 wt% Cr increased by ≈2× from ≈3000 to ≈5500 h when evaporation was suppressed. Further, it was established that a suppressed evaporation reaction affected not just the magnitude of Cr depletion in the steel but even its long term depletion rate.


Ferritic stainless steel SOFC Interconnect Cr evaporation Lifetime Cr depletion 



Oxide thickness (cm)


Scaling constant (cm−2 s−1)


Volatilisation constant (cm s−1)


Time (s)


Stoichiometric factor equal to 3.167


Gravimetrically determined mass gain (mg cm−2)


Oxide loss due to evaporation (mg cm−2)


Evaporation corrected mass gain (mg cm−2)


Gravimetrically determined component of evaporation corrected mass gain (mg cm−2)


Oxide density (mg cm−3)


Mass of Cr in the oxide at time t (mg cm−2)


Mass of Cr initially available in the steel (mg cm−2)


Mass of Cr lost due to evaporation (mg cm−2)


Cr remaining in the steel at time t (mg cm−2)


Average evaporation rate of Cr over the ith measurement interval (mg cm−2h−1)


Duration over which \({\text{E}}_{\text{i}}^{\text{Cr}}\) is applicable (h)



The authors would like to thank AB Sandvik Materials Technology for providing the materials. The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under Grant Agreement No. [278257].

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    P. Santacreu, S. Saedlou, L. Faivre, A. Acher, J. Leseux. Ferritic stainless steel grade with improved durability for high temperature exhaust manifold. SAE Technical Papers (2011).Google Scholar
  2. 2.
    C. Key, J. Eziashi, J. Froitzheim, R. Amendola, R. Smith and P. Gannon, J Electrochem Soc. 161, C373 (2014).CrossRefGoogle Scholar
  3. 3.
    W. N. Liu, X. Sun, E. Stephens and M. Khaleel, Corros Sci 53, 2406 (2011).CrossRefGoogle Scholar
  4. 4.
    J. Xiao, W. Zhang, C. Xiong, B. Chi, J. Pu and L. Jian, Int J Hydrog Energy 40, 1868 (2015).CrossRefGoogle Scholar
  5. 5.
    J. W. Stevenson, Z. G. Yang, G. G. Xia, Z. Nie and J. D. Templeton, J Power Sour 231, 256 (2013).CrossRefGoogle Scholar
  6. 6.
    N. S. Waluyo, B. K. Park, S. B. Lee, T. H. Lim, S. J. Park, R. H. Song, et al., J Solid State Electrochem 18, 445 (2014).CrossRefGoogle Scholar
  7. 7.
    E. Essuman, G. H. Meier, J. Żurek, M. Hänsel and W. J. Quadakkers, Oxid Met 69, 143 (2008).CrossRefGoogle Scholar
  8. 8.
    S. R. J. Saunders, M. Monteiro and F. Rizzo, Prog Mater Sci 53, 775 (2008).CrossRefGoogle Scholar
  9. 9.
    A. Donchev, H. Fietzek, V. Kolarik, D. Renusch and M. Schütze, Mater High Temp. 22, 139 (2005).CrossRefGoogle Scholar
  10. 10.
    A. Galerie, Y. Wouters and M. Caillet, Mater Sci Forum 369–372, 231 (2001).CrossRefGoogle Scholar
  11. 11.
    H. Asteman, K. Segerdahl, J. E. Svensson, L. G. Johansson, in High Temperature Corrosion and Protection of Materials 5, eds. R. Streiff, I. G. Wright, R. C. Krutenat, M. Caillet, A. Galerie, Pts 1 and 2 (Trans Tech Publications, Dürnten, 2001), p. 277.Google Scholar
  12. 12.
    B. B. Ebbinghaus, Combust Flame 93, 119 (1993).CrossRefGoogle Scholar
  13. 13.
    E. J. Opila, D. L. Myers, N. S. Jacobson, I. M. B. Nielsen, D. F. Johnson, J. K. Olminsky, et al., J Phys Chem A 111, 1971 (2007).CrossRefGoogle Scholar
  14. 14.
    C. Wagner, J Electrochem Soc. 99, 369 (1952).CrossRefGoogle Scholar
  15. 15.
    N. Birks, G. Meier and F. Petit, High Temperature Oxidation of Metals, (Cambridge University Press, Cambridge, 2009).Google Scholar
  16. 16.
    C. S. Tedmon, J Electrochem Soc. 113, 766 (1966).CrossRefGoogle Scholar
  17. 17.
    P. Huczkowski, V. Shemet, J. Piron-Abellan, L. Singheiser, W. J. Quadakkers and N. Christiansen, Mater Corros 55, 825 (2004).CrossRefGoogle Scholar
  18. 18.
    A. Galerie, S. Henry, Y. Wouters, M. Mermoux, J. P. Petit and L. Antoni, Mater High Temp 22, 105 (2005).CrossRefGoogle Scholar
  19. 19.
    J. Froitzheim, H. Ravash, E. Larsson, L. G. Johansson and J. E. Svensson, J Electrochem Soc. 157, B1295 (2010).CrossRefGoogle Scholar
  20. 20.
    S. Canovic, J. Froitzheim, R. Sachitanand, M. Nikumaa, M. Halvarsson, L. G. Johansson, et al., Surf Coat Technol 215, 62 (2013).CrossRefGoogle Scholar
  21. 21.
    R. Sachitanand, M. Sattari, J.-E. Svensson and J. Froitzheim, Int J Hydrog Energy 38, 15328 (2013).CrossRefGoogle Scholar
  22. 22.
    H. E. Evans, Mater Sci Technol 4, 1089 (1988).CrossRefGoogle Scholar
  23. 23.
    C. Desgranges, F. Lequien, E. Aublant, M. Nastar and D. Monceau, Oxid Met 79, 93 (2013).CrossRefGoogle Scholar
  24. 24.
    J. Froitzheim, G. H. Meier, L. Niewolak, P. J. Ennis, H. Hattendorf, L. Singheiser, et al., J Power Sour 178, 163 (2008).CrossRefGoogle Scholar
  25. 25.
    H. Falk-Windisch, J. E. Svensson and J. Froitzheim, J Power Sour 287, 25 (2015).CrossRefGoogle Scholar
  26. 26.
    B. Pujilaksono, T. Jonsson, M. Halvarsson, I. Panas, J.-E. Svensson and L.-G. Johansson, Oxid Met 70, 163 (2008).CrossRefGoogle Scholar
  27. 27.
    H. Al-Badairy, G. J. Tatlock and M. J. Bennett, Mater High Temp. 17, 101 (2000).CrossRefGoogle Scholar
  28. 28.
    D. P. Whittle, Corros Sci 12, 869 (1972).CrossRefGoogle Scholar
  29. 29.
    P. Huszkowski, S. Ertl, J. Piron-Abellan, N. Christiansen, T. Höfler, V. Shemet, et al., Mater High Temp. 22, 253 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Chalmers University of TechnologyGothenburgSweden

Personalised recommendations