Oxidation of Metals

, Volume 84, Issue 1–2, pp 185–209 | Cite as

High Temperature Reaction of MCrAlY Coating Compositions with CaO Deposits

Original Paper


The reactivity of β-NiAl + γ-Ni-based NiCoCrAlY alloys with and without CaO deposits was studied by means of isothermal exposures in air. Reaction with CaO at 1100 °C produced multi-layer scales of Al2O3 and calcium aluminates, and a mixture of liquid calcium chromate and nickel–cobalt oxide particles. Calcium chromate formation was a rapid, transient process, and the transition to a steady-state of slower Al2O3 growth was favored by increasing the alloy β fraction. The thermally-growing Al2O3 reacted with the deposit to form calcium aluminates in a solid-state diffusion process, which led to an increased oxidation rate. The analysis of Al2O3 growth kinetics in the production-destruction regime was used to account for the increased flux of aluminum entering the multi-layer scale. The effect of temperature on the ability to kinetically sustain an Al2O3 scale was then evaluated on the basis of Wagner’s criterion. Predicted results were consistent with the experimentally observed absence of passivation at 900 °C.


MCrAlY alloys Multi-layer scales Al2O3 growth kinetics CaO deposits 



This work was supported by the Department of Energy through the University Turbine Systems Research (UTSR) Program run by the National Energy Technology Laboratory, Award Number DE-FE0007271, Seth Lawson, Project Manager. The authors thank Wei Zhao and Juan Manuel Alvarado Orozco for useful discussions on some aspects of this work.


  1. 1.
    G. W. Goward, Surface & Coatings Technology 108, 73 (1998).CrossRefGoogle Scholar
  2. 2.
    J. R. Nicholls, JOM 52, 28 (2000).CrossRefGoogle Scholar
  3. 3.
    A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pettit, Progress in Materials Science 46, 505 (2001).CrossRefGoogle Scholar
  4. 4.
    B. Gleeson, Journal of Propulsion and Power 22, 375 (2006).CrossRefGoogle Scholar
  5. 5.
    A. G. Evans, D. R. Clarke and C. G. Levi, Journal of the European Ceramic Society 28, 1405 (2008).CrossRefGoogle Scholar
  6. 6.
    D. R. Clarke, M. Oechsner and N. P. Padture, MRS Bulletin 37, 891 (2012).CrossRefGoogle Scholar
  7. 7.
    R. Darolia, International Materials Reviews 58, 315 (2013).CrossRefGoogle Scholar
  8. 8.
    J. L. Smialek, F. A. Archer and R. G. Garlick, JOM 46, 39 (1994).CrossRefGoogle Scholar
  9. 9.
    M. P. Borom, C. A. Johnson and L. A. Peluso, Surface & Coatings Technology 86, 116 (1996).CrossRefGoogle Scholar
  10. 10.
    C. Mercer, S. Faulhaber, A. G. Evans and R. Darolia, Acta Materialia 53, 1029 (2005).CrossRefGoogle Scholar
  11. 11.
    S. Kramer, J. Yang, C. G. Levi and C. A. Johnson, Journal of the American Ceramic Society 89, 3167 (2006).CrossRefGoogle Scholar
  12. 12.
    C. G. Levi, J. W. Hutchinson, M.-H. Vidal-Setif and C. A. Johnson, MRS Bulletin 37, 932 (2012).CrossRefGoogle Scholar
  13. 13.
    Clean Coal Technology Topical Report Number 24, NETL (US Department of Energy, August 2006).Google Scholar
  14. 14.
    V. Nagarajan, R. D. Smith and I. G. Wright, Oxidation of Metals 31, 325 (1989).CrossRefGoogle Scholar
  15. 15.
    K. Jung, F. S. Pettit and G. H. Meier, Materials Science Forum 595–598, 805 (2008).CrossRefGoogle Scholar
  16. 16.
    K. T. Chiang, G. H. Meier and R. A. Perkins, Journal of Materials for Energy Systems 6, 71 (1984).CrossRefGoogle Scholar
  17. 17.
    W. Braue, Journal of Materials Science 44, 1664 (2009).CrossRefGoogle Scholar
  18. 18.
    W. Braue and P. Mechnich, Journal of the American Ceramic Society 94, 4483 (2011).CrossRefGoogle Scholar
  19. 19.
    I. G. Wright and T. B. Gibbons, International Journal of Hydrogen Energy 32, 3610 (2007).CrossRefGoogle Scholar
  20. 20.
    S. Sridhar, P. Rozzelle, B. Morreale and D. Alman, Metallurgical and Materials Transactions A 42, 871 (2011).CrossRefGoogle Scholar
  21. 21.
    B. Pint, JOM 65, 1024 (2013).CrossRefGoogle Scholar
  22. 22.
    M. H. Sahraei, D. McCalden, R. Hughes and L. A. Ricardez-Sandoval, Fuel 137, 245 (2014).CrossRefGoogle Scholar
  23. 23.
    Materials Preparation Center, Ames Laboratory USDOE, Ames IA, USA.Google Scholar
  24. 24.
    C. A. Schneider, W. S. Rasband and K. W. Eliceiri, Nature Methods 9, 671 (2012).CrossRefGoogle Scholar
  25. 25.
    V. K. Tolpygo and D. R. Clarke, Materials at High Temperatures 17, 59 (2000).CrossRefGoogle Scholar
  26. 26.
    E. M. Levin, C. R. Robbins and H. F. McMurdie (eds.), Phase Diagrams for Ceramists, vol. I, (The American Ceramic Society, Columbus, 1964).Google Scholar
  27. 27.
    A. Kaiser, B. Sommer and E. Woermann, Journal of the American Ceramic Society 75, 1463 (1992).CrossRefGoogle Scholar
  28. 28.
    D. Monceau and B. Pieraggi, Oxidation of Metals 50, 477 (1998).CrossRefGoogle Scholar
  29. 29.
    H. Hindam and D. P. Whittle, Oxidation of Metals 18, 245 (1982).CrossRefGoogle Scholar
  30. 30.
    G. C. Rybicki and J. L. Smialek, Oxidation of Metals 31, 275 (1989).CrossRefGoogle Scholar
  31. 31.
    M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1677 (1992).CrossRefGoogle Scholar
  32. 32.
    W. Weisweiler and S. J. Ahmed, Zement-Kalk-Gips 33, 84 (1980).Google Scholar
  33. 33.
    M. A. Gülgün, O. O. Popoola and W. M. Kriven, Journal of the American Ceramic Society 77, 531 (1994).CrossRefGoogle Scholar
  34. 34.
    B. M. Mohamed and J. H. Sharp, Journal of Materials Chemistry 7, 1595 (1997).CrossRefGoogle Scholar
  35. 35.
    C. Ghoroi and A. K. Suresh, AIChE Journal 53, 502 (2007).CrossRefGoogle Scholar
  36. 36.
    C. Wagner, Acta Metallurgica 17, 99 (1969).CrossRefGoogle Scholar
  37. 37.
    G. J. Yurek, J. P. Hirth and R. A. Rapp, Oxidation of Metals 8, 265 (1974).CrossRefGoogle Scholar
  38. 38.
    F. Gesmundo and F. Viani, Corrosion Science 18, 217 (1978).CrossRefGoogle Scholar
  39. 39.
    F. Viani and F. Gesmundo, Corrosion Science 20, 541 (1980).CrossRefGoogle Scholar
  40. 40.
    H. S. Hsu, Oxidation of Metals 26, 315 (1986).CrossRefGoogle Scholar
  41. 41.
    G. Wang, B. Gleeson and D. L. Douglass, Oxidation of Metals 31, 415 (1989).CrossRefGoogle Scholar
  42. 42.
    A. H. Heuer, D. B. Hovis, J. L. Smialek and B. Gleeson, Journal of the American Ceramic Society 94, S146 (2011).CrossRefGoogle Scholar
  43. 43.
    J. Doychak, J. L. Smialek and T. E. Mitchell, Metallurgical Transactions A 20A, 499 (1989).CrossRefGoogle Scholar
  44. 44.
    J. Jedlinski and G. Borchardt, Oxidation of Metals 36, 317 (1991).CrossRefGoogle Scholar
  45. 45.
    B. A. Pint, J. R. Martin and L. W. Hobbs, Solid State Ionics 78, 99 (1995).CrossRefGoogle Scholar
  46. 46.
    C. Wagner, Journal of the Electrochemical Society 99, 369 (1952).CrossRefGoogle Scholar
  47. 47.
    J. A. Nesbitt and R. W. Heckel, Metallurgical Transactions A 18A, 2075 (1987).CrossRefGoogle Scholar
  48. 48.
    C. E. Campbell, W. J. Boettinger and U. R. Kattner, Acta Materialia 50, 775 (2002).CrossRefGoogle Scholar
  49. 49.
    A. Andoh, S. Taniguchi and T. Shibata, Materials Science Forum 369–372, 303 (2001).CrossRefGoogle Scholar
  50. 50.
    Zhuoqun Li, PhD dissertation, University of Pittsburgh (2014).Google Scholar
  51. 51.
    F. Gesmundo and B. Gleeson, Oxidation of Metals 44, 211 (1995).CrossRefGoogle Scholar
  52. 52.
    P. Carter, B. Gleeson and D. J. Young, Acta Materialia 44, 4033 (1996).CrossRefGoogle Scholar
  53. 53.
    T. J. Nijdam and W. G. Sloof, Acta Materialia 56, 4972 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPittsburghUSA

Personalised recommendations