Skip to main content
Log in

High Temperature Reaction of MCrAlY Coating Compositions with CaO Deposits

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The reactivity of β-NiAl + γ-Ni-based NiCoCrAlY alloys with and without CaO deposits was studied by means of isothermal exposures in air. Reaction with CaO at 1100 °C produced multi-layer scales of Al2O3 and calcium aluminates, and a mixture of liquid calcium chromate and nickel–cobalt oxide particles. Calcium chromate formation was a rapid, transient process, and the transition to a steady-state of slower Al2O3 growth was favored by increasing the alloy β fraction. The thermally-growing Al2O3 reacted with the deposit to form calcium aluminates in a solid-state diffusion process, which led to an increased oxidation rate. The analysis of Al2O3 growth kinetics in the production-destruction regime was used to account for the increased flux of aluminum entering the multi-layer scale. The effect of temperature on the ability to kinetically sustain an Al2O3 scale was then evaluated on the basis of Wagner’s criterion. Predicted results were consistent with the experimentally observed absence of passivation at 900 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. W. Goward, Surface & Coatings Technology 108, 73 (1998).

    Article  Google Scholar 

  2. J. R. Nicholls, JOM 52, 28 (2000).

    Article  Google Scholar 

  3. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pettit, Progress in Materials Science 46, 505 (2001).

    Article  Google Scholar 

  4. B. Gleeson, Journal of Propulsion and Power 22, 375 (2006).

    Article  Google Scholar 

  5. A. G. Evans, D. R. Clarke and C. G. Levi, Journal of the European Ceramic Society 28, 1405 (2008).

    Article  Google Scholar 

  6. D. R. Clarke, M. Oechsner and N. P. Padture, MRS Bulletin 37, 891 (2012).

    Article  Google Scholar 

  7. R. Darolia, International Materials Reviews 58, 315 (2013).

    Article  Google Scholar 

  8. J. L. Smialek, F. A. Archer and R. G. Garlick, JOM 46, 39 (1994).

    Article  Google Scholar 

  9. M. P. Borom, C. A. Johnson and L. A. Peluso, Surface & Coatings Technology 86, 116 (1996).

    Article  Google Scholar 

  10. C. Mercer, S. Faulhaber, A. G. Evans and R. Darolia, Acta Materialia 53, 1029 (2005).

    Article  Google Scholar 

  11. S. Kramer, J. Yang, C. G. Levi and C. A. Johnson, Journal of the American Ceramic Society 89, 3167 (2006).

    Article  Google Scholar 

  12. C. G. Levi, J. W. Hutchinson, M.-H. Vidal-Setif and C. A. Johnson, MRS Bulletin 37, 932 (2012).

    Article  Google Scholar 

  13. Clean Coal Technology Topical Report Number 24, NETL (US Department of Energy, August 2006).

  14. V. Nagarajan, R. D. Smith and I. G. Wright, Oxidation of Metals 31, 325 (1989).

    Article  Google Scholar 

  15. K. Jung, F. S. Pettit and G. H. Meier, Materials Science Forum 595–598, 805 (2008).

    Article  Google Scholar 

  16. K. T. Chiang, G. H. Meier and R. A. Perkins, Journal of Materials for Energy Systems 6, 71 (1984).

    Article  Google Scholar 

  17. W. Braue, Journal of Materials Science 44, 1664 (2009).

    Article  Google Scholar 

  18. W. Braue and P. Mechnich, Journal of the American Ceramic Society 94, 4483 (2011).

    Article  Google Scholar 

  19. I. G. Wright and T. B. Gibbons, International Journal of Hydrogen Energy 32, 3610 (2007).

    Article  Google Scholar 

  20. S. Sridhar, P. Rozzelle, B. Morreale and D. Alman, Metallurgical and Materials Transactions A 42, 871 (2011).

    Article  Google Scholar 

  21. B. Pint, JOM 65, 1024 (2013).

    Article  Google Scholar 

  22. M. H. Sahraei, D. McCalden, R. Hughes and L. A. Ricardez-Sandoval, Fuel 137, 245 (2014).

    Article  Google Scholar 

  23. Materials Preparation Center, Ames Laboratory USDOE, Ames IA, USA.

  24. C. A. Schneider, W. S. Rasband and K. W. Eliceiri, Nature Methods 9, 671 (2012).

    Article  Google Scholar 

  25. V. K. Tolpygo and D. R. Clarke, Materials at High Temperatures 17, 59 (2000).

    Article  Google Scholar 

  26. E. M. Levin, C. R. Robbins and H. F. McMurdie (eds.), Phase Diagrams for Ceramists, vol. I, (The American Ceramic Society, Columbus, 1964).

    Google Scholar 

  27. A. Kaiser, B. Sommer and E. Woermann, Journal of the American Ceramic Society 75, 1463 (1992).

    Article  Google Scholar 

  28. D. Monceau and B. Pieraggi, Oxidation of Metals 50, 477 (1998).

    Article  Google Scholar 

  29. H. Hindam and D. P. Whittle, Oxidation of Metals 18, 245 (1982).

    Article  Google Scholar 

  30. G. C. Rybicki and J. L. Smialek, Oxidation of Metals 31, 275 (1989).

    Article  Google Scholar 

  31. M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1677 (1992).

    Article  Google Scholar 

  32. W. Weisweiler and S. J. Ahmed, Zement-Kalk-Gips 33, 84 (1980).

    Google Scholar 

  33. M. A. Gülgün, O. O. Popoola and W. M. Kriven, Journal of the American Ceramic Society 77, 531 (1994).

    Article  Google Scholar 

  34. B. M. Mohamed and J. H. Sharp, Journal of Materials Chemistry 7, 1595 (1997).

    Article  Google Scholar 

  35. C. Ghoroi and A. K. Suresh, AIChE Journal 53, 502 (2007).

    Article  Google Scholar 

  36. C. Wagner, Acta Metallurgica 17, 99 (1969).

    Article  Google Scholar 

  37. G. J. Yurek, J. P. Hirth and R. A. Rapp, Oxidation of Metals 8, 265 (1974).

    Article  Google Scholar 

  38. F. Gesmundo and F. Viani, Corrosion Science 18, 217 (1978).

    Article  Google Scholar 

  39. F. Viani and F. Gesmundo, Corrosion Science 20, 541 (1980).

    Article  Google Scholar 

  40. H. S. Hsu, Oxidation of Metals 26, 315 (1986).

    Article  Google Scholar 

  41. G. Wang, B. Gleeson and D. L. Douglass, Oxidation of Metals 31, 415 (1989).

    Article  Google Scholar 

  42. A. H. Heuer, D. B. Hovis, J. L. Smialek and B. Gleeson, Journal of the American Ceramic Society 94, S146 (2011).

    Article  Google Scholar 

  43. J. Doychak, J. L. Smialek and T. E. Mitchell, Metallurgical Transactions A 20A, 499 (1989).

    Article  Google Scholar 

  44. J. Jedlinski and G. Borchardt, Oxidation of Metals 36, 317 (1991).

    Article  Google Scholar 

  45. B. A. Pint, J. R. Martin and L. W. Hobbs, Solid State Ionics 78, 99 (1995).

    Article  Google Scholar 

  46. C. Wagner, Journal of the Electrochemical Society 99, 369 (1952).

    Article  Google Scholar 

  47. J. A. Nesbitt and R. W. Heckel, Metallurgical Transactions A 18A, 2075 (1987).

    Article  Google Scholar 

  48. C. E. Campbell, W. J. Boettinger and U. R. Kattner, Acta Materialia 50, 775 (2002).

    Article  Google Scholar 

  49. A. Andoh, S. Taniguchi and T. Shibata, Materials Science Forum 369–372, 303 (2001).

    Article  Google Scholar 

  50. Zhuoqun Li, PhD dissertation, University of Pittsburgh (2014).

  51. F. Gesmundo and B. Gleeson, Oxidation of Metals 44, 211 (1995).

    Article  Google Scholar 

  52. P. Carter, B. Gleeson and D. J. Young, Acta Materialia 44, 4033 (1996).

    Article  Google Scholar 

  53. T. J. Nijdam and W. G. Sloof, Acta Materialia 56, 4972 (2008).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Energy through the University Turbine Systems Research (UTSR) Program run by the National Energy Technology Laboratory, Award Number DE-FE0007271, Seth Lawson, Project Manager. The authors thank Wei Zhao and Juan Manuel Alvarado Orozco for useful discussions on some aspects of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Gheno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gheno, T., Meier, G.H. & Gleeson, B. High Temperature Reaction of MCrAlY Coating Compositions with CaO Deposits. Oxid Met 84, 185–209 (2015). https://doi.org/10.1007/s11085-015-9550-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9550-7

Keywords

Navigation