Oxidation of Metals

, Volume 84, Issue 1–2, pp 169–184 | Cite as

The Reaction Behavior of α-Si3N4 Powder at 1100–1500 °C Under Different Oxidizing Conditions

  • E. H. Wang
  • H. Dong
  • J. H. Chen
  • K. C. Chou
  • X. M. Hou
Original Paper


The reaction behavior of α-Si3N4 powder at 1100–1500 °C for 10 h under different oxidizing conditions was investigated using thermogravimetric analysis. The phase constitution and microstructure were characterized using X-ray diffraction, optical microscope, scanning electron microscopy, transmission electron microscope and fourier transformation infrared spectroscopy. The results showed that the reaction behavior of α-Si3N4 powder varies depending on temperature and the oxidizing atmosphere. At 1100–1200 °C, water vapor enhanced the reaction due to its specifically inward oxidation. Above 1300 °C, H2O further reacted with SiO2 to form silicon tetrahydroxide, which caused the reaction behavior to follow the paralinear rate law.


α-Si3N4 powder Different oxidizing conditions Kinetics 



The authors express their appreciation to the National Science-technology Support Plan Projects (Grant 2013BAF09B01), National Nature Science Foundation of China (51104012), New Century Excellent Talents in University (NECT-12-0779) and the Fundamental Research Funds for the Central Universities (FRF-TP-14-113A2) for financial support.


  1. 1.
    T. Otani and M. Hirata, Thin Solid Films 442, 2003 (44).CrossRefGoogle Scholar
  2. 2.
    S. Ogata, N. Hirosaki, C. Kocer and Y. Shibutani, Acta Materialia 52, 2004 (233).CrossRefGoogle Scholar
  3. 3.
    V. Balaji, A. N. Tiwari and R. K. Goyal, Polymer Engineering & Science 51, 2011 (509).CrossRefGoogle Scholar
  4. 4.
    K. Anzai and H. Hashimoto, Journal of Materials Science 12, 1977 (2351).CrossRefGoogle Scholar
  5. 5.
    K. Komeya, American Ceramic Society Bulletin 63, 1984 (1158).Google Scholar
  6. 6.
    W. A. Sanders and D. W. Mieskowski, American Ceramic Society Bulletin 64, 1985 (304).Google Scholar
  7. 7.
    L. Chuck, S. M. Goodrich, N. L. Hecht and D. E. McCullum, Ceramic Engineering and Science Proceedings 11, 1990 (1007).CrossRefGoogle Scholar
  8. 8.
    D. S. Fox, E. J. Opila, Q. G. N. Nguyen, D. L. Humphrey and S. M. Lewton, Journal of the American Ceramic Society 86, 2003 (1256).CrossRefGoogle Scholar
  9. 9.
    A. F. Hampton and H. C. Graham, Oxidation of Metals 10, 1976 (239).CrossRefGoogle Scholar
  10. 10.
    T. Suetsuna and T. Ohji, Journal of the American Ceramic Society 88, 2005 (1139).CrossRefGoogle Scholar
  11. 11.
    R. M. Horton, Journal of the American Ceramic Society 52, 1969 (121).CrossRefGoogle Scholar
  12. 12.
    M. Maeda, K. Nakamura and M. Yamada, Journal of Materials Science 25, 1990 (3790).CrossRefGoogle Scholar
  13. 13.
    Y. G. Gogotsi and F. Porz, Corrosion Science 33, 1992 (627).CrossRefGoogle Scholar
  14. 14.
    Z. Zheng, R. E. Tressler and K. E. Spear, Corrosion Science 33, 1992 (569).CrossRefGoogle Scholar
  15. 15.
    G. Blugan, D. Wittig and J. Kuebler, Corrosion Science 51, 2009 (547).CrossRefGoogle Scholar
  16. 16.
    D. Galusková, M. Kašiarová, M. Hnatko, D. Galusek, J. Dusza and P. Šajgalík, Corrosion Science 85, 2014 (94).CrossRefGoogle Scholar
  17. 17.
    E. J. Opila, D. S. Fox and N. S. Jacobson, Journal of the American Ceramic Society 80, 1997 (1009).CrossRefGoogle Scholar
  18. 18.
    N. S. Jacobson, E. J. Opila, D. L. Myers and E. H. Copland, The Journal of Chemical Thermodynamics 37, 2005 (1130).CrossRefGoogle Scholar
  19. 19.
    A. V. Plyasunov, Geochimica et Cosmochimica Acta 75, 2011 (3853).CrossRefGoogle Scholar
  20. 20.
    A. Hashimoto, Geochimica et Cosmochimica Acta 56, 1992 (511).CrossRefGoogle Scholar
  21. 21.
    J. L. Smialek, R. C. Robinson, E. J. Opila, D. S. Fox and N. S. Jacobson, Advanced Composite Materials 8, 1999 (33).CrossRefGoogle Scholar
  22. 22.
    X. M. Hou, K. C. Chou, X. J. Hu and H. L. Zhao, Journal of Alloys and Compounds 459, 2008 (123).CrossRefGoogle Scholar
  23. 23.
    X. M. Hou and K. C. Chou, Corrosion Science 50, 2008 (2367).CrossRefGoogle Scholar
  24. 24.
    C. S. Tedmon, Journal of the Electrochemical Society 69, 1966 (674).Google Scholar
  25. 25.
    E. J. Opila and N. S. Jacobson, Oxidation of Metals 44, 1995 (527).CrossRefGoogle Scholar
  26. 26.
    E. J. Opila and R. E. Hann, Journal of the American Ceramic Society 80, 1997 (197).CrossRefGoogle Scholar
  27. 27.
    X. M. Hou, Z. Y. Yu, Z. Y. Chen, K. C. Chou and B. J. Zhao, Journal of the American Ceramic Society 96, 2013 (1877).CrossRefGoogle Scholar
  28. 28.
    E. J. Opila, Journal of the American Ceramic Society 77, 1994 (730).CrossRefGoogle Scholar
  29. 29.
    W. S. Liao, C. H. Lin and S. C. Lee, Applied Physics Letters 65, 1994 (2229).CrossRefGoogle Scholar
  30. 30.
    M. Fukushima, Y. Zhou, Y. I. Yoshizawa and K. Hirao, Journal of the European Ceramic Society 28, 2008 (1043).CrossRefGoogle Scholar
  31. 31.
    Z. Hong, L. Cheng, L. Zhang and Y. Wang, Journal of the American Ceramic Society 92, 2009 (193).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • E. H. Wang
    • 1
  • H. Dong
    • 1
  • J. H. Chen
    • 2
  • K. C. Chou
    • 1
  • X. M. Hou
    • 1
  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina
  2. 2.School of Material Science and EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations