Advertisement

Oxidation of Metals

, Volume 84, Issue 1–2, pp 91–104 | Cite as

Magnetron Sputtered Mo(Six,Al1−x)2 Oxidation Protection Coatings for Mo–Si–B Alloys

  • Annika Lange
  • Reinhold Braun
  • Martin Heilmaier
Original Paper

Abstract

Double layer coatings consisting of a 2 µm thick diffusion barrier and a 5 µm thick oxidation protective topcoat were deposited on Mo–Si–B alloys using magnetron sputtering. During vacuum annealing of the amorphous as-deposited coatings, the tetragonal D8l–Mo5SiB2 phase evolved in the Mo–12Si–21B (at.%) interlayer; in the Mo–48Si–24Al and Mo–71Si–8Al (at.%) topcoats, the C40–Mo(Si,Al)2 and the C11b–MoSi2 phases formed, respectively. The oxidation behavior of the coated samples was investigated at 800 and 1000 °C under cyclic conditions in air. Compared to the bare substrate, the coated samples exhibited significantly reduced mass loss at both temperatures. A scale with a mixture of silica and mullite-like oxides formed on the coatings at 800 °C; in addition, outer aluminum borate needles grew on the Mo–48Si–24Al topcoat. At 1000 °C both coatings formed dense scales of SiO2 and a mullite-like phase, being protective for more than 100 h.

Keywords

Molybdenum silicides Oxidation Coatings Intermetallics Physical vapor deposition Aero-engine components 

Notes

Acknowledgments

The authors thank Mr. Jörg Brien and Mr. Andreas Handwerk for coating deposition and annealing and appreciate the substrate alloy supply by Plansee SE (Reutte, Austria). The valuable discussions with Prof. Dr. Martin Schmücker (DLR) are thankfully acknowledged. The microprobe analysis performed by Dr. Martin Palm and Mrs. Irina Wossack, Max Planck Institute of Iron Research (Düsseldorf, Germany), are gratefully acknowledged.

References

  1. 1.
    Y. Tamarin, Protective Coatings for Turbine Blades, (ASM International, The Materials Society, Ohio, 2002).Google Scholar
  2. 2.
    M. Middlemas and J. Cochran, Journal of the Minerals, Metals and Materials Society 62, 20 (2010). doi: 10.1007/s11837-010-0150-3.CrossRefGoogle Scholar
  3. 3.
    J.-C. Zhao and J. H. Westbrook, MRS Bulletin 28, 622 (2003). doi: 10.1557/mrs2003.189.CrossRefGoogle Scholar
  4. 4.
    D. M. Berczik, US Patent 5,595,616, 20.01.1997.Google Scholar
  5. 5.
    M. Heilmaier, M. Krüger, H. Saage, J. Rösler, D. Mukherji, U. Glatzel, R. Völkl, R. Hüttner, G. Eggeler, Ch Somsen, T. Depka, H. Christ, B. Gorr and S. Burk, Journal of the Minerals, Metals and Materials Society 61, 61 (2009). doi: 10.1007/s11837-009-0106-7.CrossRefGoogle Scholar
  6. 6.
    G. Hasemann, I. Bogomol, D. Schliephake, P. I. Loboda and M. Krüger, Intermetallics 48, 28 (2014). doi: 10.1016/j.intermet.2013.11.022.CrossRefGoogle Scholar
  7. 7.
    J. Schneibel, P. Tortorelli, R. Ritchie and J. Kruzic, Metallurgical and Materials Transactions A 36, 525 (2005). doi: 10.1007/s11661-005-0166-4.CrossRefGoogle Scholar
  8. 8.
    P. Jéhanno, M. Heilmaier and H. Kestler, Intermetallics 12, 1005 (2004). doi: 10.1016/j.intermet.2004.03.006.CrossRefGoogle Scholar
  9. 9.
    M. G. Mendiratta, T. A. Parthasarathy and D. M. Dimiduk, Intermetallics 10, 225 (2002). doi: 10.1016/s0966-9795(01)00118-2.CrossRefGoogle Scholar
  10. 10.
    T. A. Parthasarathy, M. G. Mendiratta and D. M. Dimiduk, Acta Materialia 50, 1857 (2002). doi: 10.1016/s1359-6454(02)00039-3.CrossRefGoogle Scholar
  11. 11.
    S. Paswan, R. Mitra and S. K. Roy, Intermetallics 15, 1217 (2007). doi: 10.1016/j.intermet.2007.02.012.CrossRefGoogle Scholar
  12. 12.
    J. Perepezko and R. Sakidja, JOM Journal of the Minerals, Metals and Materials Society 62, 13 (2010). doi: 10.1007/s11837-010-0148-x.CrossRefGoogle Scholar
  13. 13.
    F. A. Rioult, S. D. Imhoff, R. Sakidja and J. H. Perepezko, Acta Materialia 57, 4600 (2009). doi: 10.1016/j.actamat.2009.06.036.CrossRefGoogle Scholar
  14. 14.
    J. H. Perepezko and R. Sakidja, Advanced Engineering Materials 11, 892 (2009). doi: 10.1002/adem.200900118.CrossRefGoogle Scholar
  15. 15.
    R. Sakidja, J. S. Park, J. Hamann and J. H. Perepezko, Scripta Materialia 53, 723 (2005). doi: 10.1016/j.scriptamat.2005.05.015.CrossRefGoogle Scholar
  16. 16.
    K. Ito, T. Hayashi, M. Yokobayashi and H. Numakura, Intermetallics 12, 407 (2004). doi: 10.1016/j.intermet.2003.12.009.CrossRefGoogle Scholar
  17. 17.
    Z. Tang, A. J. Thom, M. J. Kramer and M. Akinc, Intermetallics 16, 1125 (2008). doi: 10.1016/j.intermet.2008.06.014.CrossRefGoogle Scholar
  18. 18.
    R. Sakidja, F. Rioult, J. Werner and J. H. Perepezko, Scripta Materialia 55, 903 (2006). doi: 10.1016/j.scriptamat.2006.07.044.CrossRefGoogle Scholar
  19. 19.
    J. S. Park, R. Sakidja and J. H. Perepezko, Scripta Materialia 46, 765 (2002). doi: 10.1016/s1359-6462(02)00070-2.CrossRefGoogle Scholar
  20. 20.
    R. Rioult, N. Sekido, R. Sakidja and J. H. Perepezko, Journal of the Electrochemical Society 154, C692 (2007).CrossRefGoogle Scholar
  21. 21.
    R. Mitra and V. V. R. Rao, Materials Science and Engineering: A 260, 146 (1999). doi: 10.1016/s0921-5093(98)00972-1.CrossRefGoogle Scholar
  22. 22.
    L. Ingemarsson, K. Hellström, S. Canovic, T. Jonsson, M. Halvarsson, L. G. Johansson and J. E. Svensson, Journal of Materials Science 48, 1511 (2013). doi: 10.1007/s10853-012-6906-0.CrossRefGoogle Scholar
  23. 23.
    A. K. Vasudévan and J. J. Petrovic, Materials Science and Engineering A 155, 1 (1992). doi: 10.1016/0921-5093(92)90308-N.CrossRefGoogle Scholar
  24. 24.
    M. K. Meyer and A. J. Thom, Journal of the American Ceramic Society 79, 938 (1996).CrossRefGoogle Scholar
  25. 25.
    M. Akinc, M. K. Meyer, M. J. Kramer, A. J. Thom, J. J. Huebsch and B. Cook, Materials Science and Engineering A 261, 16 (1999). doi: 10.1016/s0921-5093(98)01045-4.CrossRefGoogle Scholar
  26. 26.
    H. Yokota, T. Kudoh and T. Suzuki, Surface and Coatings Technology 169–170, 171 (2003). doi: 10.1016/s0257-8972(03)00221-4.CrossRefGoogle Scholar
  27. 27.
    A. Stergiou, P. Tsakiropoulos and A. Brown, Intermetallics 5, 69 (1997). doi: 10.1016/s0966-9795(96)00068-4.CrossRefGoogle Scholar
  28. 28.
    T. Maruyama and K. Yanagihara, Materials Science and Engineering: A 239–240, 828 (1997). doi: 10.1016/s0921-5093(97)00673-4.CrossRefGoogle Scholar
  29. 29.
    L. Ingemarsson, M. Halvarsson, J. Engkvist, T. Jonsson, K. Hellström, L. G. Johansson and J. E. Svensson, Intermetallics 18, 633 (2010). doi: 10.1016/j.intermet.2009.10.019.CrossRefGoogle Scholar
  30. 30.
    L. Meddar, B. Magnien, M. Clisson, L. Roue and D. Guay, Journal of Materials Science 47, 6792 (2012). doi: 10.1007/s10853-012-6623-8.CrossRefGoogle Scholar
  31. 31.
    C. E. Ramberg and W. L. Worrell, Journal of the American Ceramic Society 85, 444 (2002). doi: 10.1111/j.1151-2916.2002.tb00109.x.CrossRefGoogle Scholar
  32. 32.
    E. Opila, N. Jacobson, D. Myers and E. Copland, JOM 58, 22 (2006). doi: 10.1007/s11837-006-0063-3.CrossRefGoogle Scholar
  33. 33.
    A. Lange, R. Braun and M. Heilmaier, Intermetallics 48, 19 (2014). doi: 10.1016/j.intermet.2013.09.007.CrossRefGoogle Scholar
  34. 34.
    J. H. Perepezko and R. Sakidja, Oxidation of Metals 80, 207 (2013). doi: 10.1007/s11085-013-9373-3.CrossRefGoogle Scholar
  35. 35.
    S. Kim and J. H. Perepezko, Journal of Phase Equilibria and Diffusion 27, 605 (2006). doi: 10.1007/bf02736562.CrossRefGoogle Scholar
  36. 36.
    R. Sakidja, J. H. Perepezko, S. Kim and N. Sekido, Acta Materialia 56, 5223 (2008). doi: 10.1016/j.actamat.2008.07.015.CrossRefGoogle Scholar
  37. 37.
    J. H. Fournelle, J. J. Donovan, S. Kim, J. H. Perepezko, Inst. Phys. Conf. Ser. No 165: Symp. 14, 425-427 (2000).Google Scholar
  38. 38.
    N. Ponweiser, W. Paschinger, A. Ritscher, J. C. Schuster and K. W. Richter, Intermetallics 19, 409 (2011). doi: 10.1016/j.intermet.2010.11.010.CrossRefGoogle Scholar
  39. 39.
    T. Tabaru, K. Shobu, M. Sakamoto and S. Hanada, Intermetallics 12, 33 (2004). doi: 10.1016/j.intermet.2003.07.002.CrossRefGoogle Scholar
  40. 40.
    J. A. Thornton, Journal of Vacuum Science and Technology 4, 3059 (1986).CrossRefGoogle Scholar
  41. 41.
    J. A. Thornton, Annual Review Materials Science 7, 239 (1977).CrossRefGoogle Scholar
  42. 42.
    A. Gokhale and G. Abbaschian, Journal of Phase Equilibria 12, 493 (1991). doi: 10.1007/bf02645979.CrossRefGoogle Scholar
  43. 43.
    C. Guo, C. Li, P. J. Masset and Z. Du, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry 36, 100 (2012). doi: 10.1016/j.calphad.2011.12.003.CrossRefGoogle Scholar
  44. 44.
    V. Raghavan, Journal of Phase Equilibria and Diffusion 33, 329 (2012). doi: 10.1007/s11669-012-0069-1.CrossRefGoogle Scholar
  45. 45.
    P. S. Frankwicz and J. H. Perepezko, Materials Science and Engineering A 246, 199 (1998). doi: 10.1016/s0921-5093(97)00747-8.CrossRefGoogle Scholar
  46. 46.
    N. T. Ponweiser, W. Paschinger, A. Ritscher, J. C. Schuster and K. W. Richter, Intermetallics 19, 409 (2011). doi: 10.1016/j.intermet.2010.11.010.CrossRefGoogle Scholar
  47. 47.
    D. A. Pankhurst, Physical Review 71, 075114 (2005).CrossRefGoogle Scholar
  48. 48.
    D. A. Pankhurst, D. Nguyen-Manh and D. G. Pettifor, Physical Review B 69, 075113 (2004).CrossRefGoogle Scholar
  49. 49.
    V. Y. Kodash and J. W. Fergus, Journal of the Electrochemical Society 146, 2762 (1999).CrossRefGoogle Scholar
  50. 50.
    T. Tabaru, K. Shobu, H. Hirai and S. Hanada, Intermetallics 11, 721 (2003). doi: 10.1016/s0966-9795(03)00072-4.CrossRefGoogle Scholar
  51. 51.
    L. Ingemarsson, K. Hellström, L. G. Johansson, J. E. Svensson and M. Halvarsson, Intermetallics 19, 1319 (2011). doi: 10.1016/j.intermet.2011.05.002.CrossRefGoogle Scholar
  52. 52.
    T. Tabaru, J.-H. Kim, K. Shobu, M. Sakamoto, H. Hirai and S. Hanada, Metallurgical and Materials Transactions A 36, 617 (2005). doi: 10.1007/s11661-005-0177-1.CrossRefGoogle Scholar
  53. 53.
    A. Lange and R. Braun, Corrosion Science 84, 74 (2014).CrossRefGoogle Scholar
  54. 54.
    A. A. Said, Thermochimica Acta 236, 93 (1994). doi: 10.1016/0040-6031(94)80258-0.CrossRefGoogle Scholar
  55. 55.
    H. Lührs, R. X. Fischer and H. Schneider, Materials Research Bulletin 47, 4031 (2012). doi: 10.1016/j.materresbull.2012.08.064.CrossRefGoogle Scholar
  56. 56.
    S. H. Hong, W. Cermignani and G. L. Messing, Journal of the European Ceramic Society 16, 133 (1996s). doi: 10.1016/0955-2219(95)00144-1.CrossRefGoogle Scholar
  57. 57.
    S.-H. Hong and G. L. Messing, Journal of the American Ceramic Society 80, 1551 (1997). doi: 10.1111/j.1151-2916.1997.tb03015.x.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Annika Lange
    • 1
  • Reinhold Braun
    • 1
  • Martin Heilmaier
    • 2
  1. 1.Institute of Materials ResearchGerman Aerospace Center (DLR)CologneGermany
  2. 2.Institute for Applied MaterialsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations