Oxidation of Metals

, Volume 83, Issue 1–2, pp 133–150 | Cite as

High Temperature Oxidation Stability of Aerodynamically Optimised Riblets for Blades of Aero-engine Applications

Original Paper


The mechanism of nature’s way of friction reduction and aerodynamical optimisation is applied worldwide. There is ample literature on investigations and measurement of skin friction reduction in the boundary layer over flat plates and on turbo machinery type blades. When using a surface with riblet structures, the turbulent momentum transfer at the wall which is responsible for the skin friction is hampered. This paper deals with the oxidation and characterisation of riblets with micrometer dimensions for aerodynamically optimised high temperature turbine applications. Riblets were fabricated on EB-PVD NiCoCrAlY coatings by using a pico-second laser. The high temperature oxidation stability of the riblets was tested by conducting cyclic oxidation tests. The temperatures were selected as 900 and 1100 °C and the time of oxidation was varied between 1 and 1,000 cycles. The thermocyclic tests at 900 °C proved that the riblets are stable even after 1,000 cycles and at 1,100 °C the stability is permitted to until only 100 cycles. With few modifications in the structuring process this stability can be further improved.


NiCoCrAlY coating Oxidation Riblets Yttria formation EB-PVD 



The authors would like to express their gratitude to A. Handwerk for thermal cycling tests and D. Peters for EB-PVD experiments. The authors would like to thank the DFG under SPP1299 for financial support.


  1. 1.
    N. P. Padture, M. Gell and E. H. Jordan, Science 296, 280 (2002).CrossRefGoogle Scholar
  2. 2.
    W. G. Sloof and T. J. Nijdam, International Journal of Materials Research 100, 1318 (2009).CrossRefGoogle Scholar
  3. 3.
    J. R. Nicholls, MRS Bulletin 28, 659 (2003).CrossRefGoogle Scholar
  4. 4.
    T. Xu, S. Faulhaber, C. Mercer, M. Maloney and A. Evans, Acta Materialia 52, 1439 (2004).CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, B. A. Pint, J. A. Haynes and I. G. Wright, Surface & Coatings Technology 200, 1259 (2005).CrossRefGoogle Scholar
  6. 6.
    I. G. Wright and B. A. Pint, Proceedings of the Institution of Mechanical Engineers Part A-Journal of Power and Energy 219, 101 (2005).CrossRefGoogle Scholar
  7. 7.
    B. A. Pint, I. G. Wright, W. Y. Lee, Y. Zhang, K. Prussner and K. B. Alexander, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 245, 201 (1998).CrossRefGoogle Scholar
  8. 8.
    W. Hage, Zur Widerstandsverminderung von dreidimensionalen Riblet-Strukturen und anderen Oberflächen, Dissertation, TU, Berlin, 2004.Google Scholar
  9. 9.
    M. J. Walsh, Journal of Aircraft 27, 572 (1990).CrossRefGoogle Scholar
  10. 10.
    D. W. Bechert, M. Bruse and W. Hage, Experiments in Fluids 28, 403 (2000).CrossRefGoogle Scholar
  11. 11.
    C. Fang, T. Yan-Ping, and C. Mao-Zhang, in Proceedings of ASME Gas Turbine and Aeroengine Congress and Exposition 1990, 90-GT-207, (1990).Google Scholar
  12. 12.
    M. Boese and L. Fottner, in Proceedings of ASME Turbo Expo 2002, GT-2002-30438 (2002).Google Scholar
  13. 13.
    C. C. Büttner and U. Schulz, Advanced Engineering Materials 13, 288 (2011).CrossRefGoogle Scholar
  14. 14.
    C. Büttner, Shark Skin Inspired Surfaces for Aerodynamically Optimized Hugh Temperature Applications-Fabrication, Oxidation, Characterization, PhD thesis, RWTH Achen (2011).Google Scholar
  15. 15.
    T. J. Nijdam and W. G. Sloof, Surface & Coatings Technology 201, 3894 (2006).CrossRefGoogle Scholar
  16. 16.
    T. J. Nijdam, G. H. Marijnissen, E. Vergeldt, A. B. Kloosterman and W. G. Sloof, Oxidation of Metals 66, 269 (2006).CrossRefGoogle Scholar
  17. 17.
    A. Gil, V. Shemet, R. Vassen, M. Subanovic, J. Toscano, D. Naumenko, L. Singheiser and W. J. Quadakkers, Surface & Coatings Technology 201, 3824 (2006).CrossRefGoogle Scholar
  18. 18.
    J. Toscano, R. Vassen, A. Gil, M. Subanovic, D. Naumenko, L. Singhelser and W. Quadakkers, Surface & Coatings Technology 201, 3906 (2006).CrossRefGoogle Scholar
  19. 19.
    K. Fritscher and C. Leyens, Materialwissenschaft Und Werkstofftechnik 28, 384 (1997).CrossRefGoogle Scholar
  20. 20.
    T. J. Nijdam, L. P. H. Jeurgens, J. H. Chen and W. G. Sloof, Oxidation of Metals 64, 355 (2005).CrossRefGoogle Scholar
  21. 21.
    U. Schulz, K. Fritscher and A. Ebach-Stahl, Surface & Coatings Technology 203, 449 (2008).CrossRefGoogle Scholar
  22. 22.
    T. J. Nijdam and W. G. Sloof, Materials at High Temperatures 22, 551 (2005).CrossRefGoogle Scholar
  23. 23.
    J. D. Kuenzly and D. L. Douglass, Oxidation of Metals 8, 139 (1974).CrossRefGoogle Scholar
  24. 24.
    H. M. Tawancy, N. M. Abbas and A. Bennett, Surface & Coatings Technology 68, 10 (1994).CrossRefGoogle Scholar
  25. 25.
    W. Braue, U. Schulz, K. Fritscher, C. Leyens and R. Wirth, Materials at High Temperatures 22, 393 (2005).CrossRefGoogle Scholar
  26. 26.
    H. Lau, Surface & Coatings Technology 235, 121 (2013).CrossRefGoogle Scholar
  27. 27.
    S. Sacre, U. Wienstroth, H. G. Feller and L. K. Thomas, Journal of Materials Science 28, 1843 (1993).CrossRefGoogle Scholar
  28. 28.
    M. S. D. Naumenko, M. Kamruddin, E. Wessel, L. Niewolak, L. Singheiser, and W.J. in Proceedings of Int. Charles Parsons Turbine Conference (2007), p. 193.Google Scholar
  29. 29.
    E. A. G. Shillington and D. R. Clarke, Acta Materialia 47, 1297 (1999).CrossRefGoogle Scholar
  30. 30.
    B. Saruhan, U. Schulz, and M. Bartsch, in Layered, Functional Gradient Ceramics, and Thermal Barrier Coatings: Design, Fabrication and Applications, eds. M. Anglada, E. Jimenez Pique, and P. Hvizdos, Key Engineering Materials, (2007), p. 137.Google Scholar
  31. 31.
    M. Karadge, X. Zhao, M. Preuss and P. Xiao, Scripta Materialia 54, 639 (2006).CrossRefGoogle Scholar
  32. 32.
    J. A. Nychka, T. Xu, D. R. Clarke and A. G. Evans, Acta Materialia 52, 2561 (2004).CrossRefGoogle Scholar
  33. 33.
    J. Toscano, Influence of Composition and Processing on the Oxidation Behaviour of MCrAlY Coatings for TBC Applications, PhD thesis, RWTH Aachen (2008).Google Scholar
  34. 34.
    A. U. Munawar, U. Schulz, G. Cerri and H. Lau, Surface and Coatings Technology 245, 92 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Materials ResearchGerman Aerospace Center (DLR)CologneGermany
  2. 2.MTU Aero-enginesMunichGermany

Personalised recommendations