Skip to main content
Log in

Kinetics of Internal Oxidation of Mn-Steel Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Internal oxidation of three Mn-steel alloys with 1.7, 3.5 and 7.0 wt% Mn concentration at 950 °C in a gas mixture composed of nitrogen, hydrogen and water vapor with a dew point of +10°C was evaluated. For these alloys, the kinetics of internal oxidation are diffusion-controlled and obey parabolic growth rate law. The diffusion coefficient of oxygen and manganese determined from the observed internal oxidation kinetics are 3.35 × 10−7 and 4.14 × 10−12 cm2/s at 950 °C, respectively. The formed internal oxide precipitates are mainly composed of MnO. The solubility product of MnO in an austenitic iron matrix is estimated to be (7.66 ± 0.18) × 10−9 mol fraction2 at 950 °C. The numerical simulation of concentration depth profiles of precipitated oxygen is in agreement with depth profiles determined with image analysis and X-ray microanalysis. Validity of the numerical simulation in case of the phase transformation was also tested. When a 1.7 wt% Mn-steel alloy is oxidized at 850 °C (instead of 950 °C) with a dew point of +12 °C partial phase transformation from austenite to ferrite takes place due to the Mn depletion. The associated precipitated oxygen concentration depth profile can be predicted accurately with numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The grading system for abrasives is FEPA standard, Federation of European Products of Abrasives.

References

  1. G. M. Song, W. G. Sloof, T. Vystavel and J. Th. M. De Hosson, Materials Science Forum 539–543, 1104 (2007).

  2. G. M. Song,T. Vystavel, N. van der Pers, J. Th. M. De Hosson and W. G. Sloof, ActaMaterialia 60, 2973 (2012).

  3. G. Zimbitas and W. G. Sloof, Materials Science Forum 696, 82 (2011).

  4. M. Shibata, JEOL News 39, 28 (2004).

    Google Scholar 

  5. J. T. Armstrong, Quantitative elemental analysis of individual microparticles with electron beam instruments, in Electron Probe Quantitation, K. F. J. Heinrich and D. E. Newbury (Editors) (Plenum Press, New York, 1991), p. 261.

  6. ImageJ, image processing and analysis in Java, available from: http://rsbweb.nih.gov/ij/.

  7. A. S. M. Handbook, Metallography and Microstructures, vol. 9 (Materials Park, OH, ASM International, 1992), pp. 124–133.

    Google Scholar 

  8. W. M. Haynes (ed.), CRC Handbook of Chemistry and Physics, 93rd ed. (Internet version 2013), (CRC Press/Taylor and Francis, Boca Raton, FL, 2012-2013), p. 4–75.

  9. C. Wagner, Zeitschriftfür Elektrochemie 63, 772 (1959).

  10. R. A. Rapp, ActaMetallurgica 9, 730 (1961).

  11. R. A. Rapp, Corrosion 21, 382 (1965).

  12. A. Fick, Annalen der Physik 170, 59 (1855).

  13. J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford, 1975).

    Google Scholar 

  14. D. Huin, P. Flauder and J.-B. Leblond, Oxidation of Metals 64, 131 (2005).

  15. E. Feulvarch, J. M. Bergheau and J. B. Leblond, International Journal for Numerical Methods in Engineering 78, 1492 (2009).

  16. J. H. Swisher and E. T. Turkdogan, Transactions of the Metallurgical Society of AIME 239, 426 (1967).

  17. K. Nohara and K. Hirano, Transactions of the Iron and Steel Institute of Japan MetalsSuppl. 11, 1267 (1971).

    Google Scholar 

  18. H. Oikawa, Tetsu-To-Hagane 68, 1982 (1489).

  19. V. A. Lashgari, C. Kwakernaak and W. G. Sloof, Oxidation of Metals 81, 435 (2014).

  20. J. Takada, S. Yamamoto, S. Kikuchi and M. Adachi, Metallurgical Transactions A 17, 221 (1986).

    Article  Google Scholar 

  21. C. Wagner, Journal of the Electrochemical Society 99, 369 (1952).

  22. R. H. Tien and E. T. Turkdogan, Metal Science 9, 233 (1975).

  23. Thermo-Calc Software, available from: http://www.thermocalc.com/.

  24. O. Kubaschewski, C. B. Alcock and P. J. Spencer, Materials Thermo-Chemistry (Pergamon Press, 1993).

  25. A. S. M. Handbook, Alloy Phase Diagrams, vol. 3 (ASM International, Materials Park, OH, 1992).

    Google Scholar 

Download references

Acknowledgments

This research was carried out under project number M22.7.11439 in the framework of the Research Program of the Materials innovation institute (M2i, www.m2i.nl). Financial support from International Zinc Association (IZA, www.zinc.org) is gratefully acknowledged. The authors are indebted to Dr. W. Melfo, Dr. H. Bolt and Dr. M. Zuiderwijk of Tata Steel (IJmuiden, The Netherlands) for valuable discussions and providing the Mn steel alloys. The authors are also indebted to Ing. J. C. Brouwer for technical support and assistance with experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. G. Sloof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashgari, V.A., Zimbitas, G., Kwakernaak, C. et al. Kinetics of Internal Oxidation of Mn-Steel Alloys. Oxid Met 82, 249–269 (2014). https://doi.org/10.1007/s11085-014-9490-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-014-9490-7

Keywords

Navigation