Oxidation of Metals

, Volume 82, Issue 3–4, pp 181–193 | Cite as

Low-Temperature Oxidation of Cu(100), Cu(110) and Cu(111)

  • Kensuke Fujita Kusano
  • Masahito Uchikoshi
  • Kouji Mimura
  • Minoru Isshiki
Original Paper


To better understand the oxidation kinetics of Cu, the oxidation kinetics of Cu(111) in the low-temperature range of 313–453 K were studied using spectroscopic ellipsometry. The low-temperature oxidations of Cu(100) and Cu(110) were also investigated and compared against Cu(111). Similar to the kinetics of Cu(111), those of Cu(100) and Cu(110) depend on the oxide thickness, which exhibit logarithmic behavior for oxide thicknesses under 5 nm, cubic behavior in the range of 5–25 nm, and parabolic behavior over 25 nm. A diffusion model was developed to simulate the kinetics of Cu(100), Cu(110) and Cu(111).


Low-temperature Oxidation kinetics Copper Cubic law 


  1. 1.
    H. Takasago, K. Adachi and M. Takeda, A copper/polyimide metal-base packing technology. J. Electron. Mater. 18, (2), 319 (1989).CrossRefGoogle Scholar
  2. 2.
    R. H. Havemann and J. A. Hutchby, High-performance interconnects: An integration overview. Proc. IEEE. 89, 586 (2001).CrossRefGoogle Scholar
  3. 3.
    Y. Z. Hu, R. Sharangpani and S. P. Tay, Kinetic investigation of copper film oxidation by spectroscopic ellipsometry and reflectometry. J. Vac. Sci. Technol. A. 18, (5), 2527 (2000).CrossRefGoogle Scholar
  4. 4.
    T. K. S. Wong, Time dependent dielectric breakdown in copper low-k interconnects: Mechanisms and reliability models. Materials 5, (9), 1602 (2012).CrossRefGoogle Scholar
  5. 5.
    J. P. Singh, T.-M. Lu and G.-C. Wang, Field-induced cation migration in Cu oxide films by in situ scanning tunnelling microscopy. Appl. Phys. Lett. 82, (26), 4674 (2003).CrossRefGoogle Scholar
  6. 6.
    G. Papadimitropoulos, N. Vourdas, V Em Vamvakas and D. Davazoglou, Optical and structural properties of copper oxide thin films grown by oxidation of metal layers. Thin Solid Films 515, (4), 2428 (2006).CrossRefGoogle Scholar
  7. 7.
    R. J. Iwanowski and D. Trivih, Cu/Cu2O Schottky barrier solar cells prepared by multistep irradiation of a Cu2O substrate by H+ ions. Sol. Cell. 13, (3), 253 (1985).CrossRefGoogle Scholar
  8. 8.
    H. Oguchi, H. Kanai, K. Utani, Y. Matsumura and S. Imamura, Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts. Appl. Catal. A Gen. 293, (28), 64 (2005).CrossRefGoogle Scholar
  9. 9.
    A. S. Khanna, Introduction to high temperature oxidation and corrosion (ASM International, Ohio, USA, 2002) Ch. 4, pp. 61–71.Google Scholar
  10. 10.
    C. Wagner, Beitrag zur theorie des anlaufvogangs. Z. Phys. Chem. Abt. B. 21, 25 (1933). (in German).Google Scholar
  11. 11.
    N. Cabrera and N. F. Mott, Theory of metal oxidation. Rep. Prog. Phys. 12, (1), 163 (1949).CrossRefGoogle Scholar
  12. 12.
    K. Hauffe and B. I. Ilschner, Über den Mechanismus der Oxydation von Nickel bei niedrigen temperaturen. Z. Elektrochem. 58, 382 (1954). (in German).Google Scholar
  13. 13.
    P. T. Landsberg, On the logarithmic rate law in chemisorption and oxidation. J. Chem. Phys. 23, (6), 1079 (1955).CrossRefGoogle Scholar
  14. 14.
    H. H. Uhlig, Initial oxidation rate of metals and the logarithmic equation. Acta Metall. 4, (5), 541 (1956).CrossRefGoogle Scholar
  15. 15.
    T. N. Rhodin Jr, Low temperature oxidation of copper. I. Physical mechanism. J. Am. Chem. Soc. 72, (11), 5102 (1950).CrossRefGoogle Scholar
  16. 16.
    F. W. Young Jr, J. V. Cathcart and A. T. Gwathmey, The rates of oxidation of several faces of a single crystal of copper as determined with elliptically polarized light. Acta Metall. 4, (2), 145 (1956).CrossRefGoogle Scholar
  17. 17.
    M. Raugh and P. Wibmann, The oxidation kinetics of thin copper films studied by ellipsometry. Thin Solid Films 228, (1–2), 121 (1993).Google Scholar
  18. 18.
    M. O’Reilly, X. Jiang, J. T. Beechinor, S. Lynch, C. NiDheasuna, J. C. Patterson and G. M. Crean, Investigation of the oxidation behaviour of thin film and bulk copper. Appl. Surf. Sci. 91, (1–4), 152 (1995).CrossRefGoogle Scholar
  19. 19.
    H. Derin and K. Kantarli, Optical characterization of thin thermal oxide films on copper by ellipsometry. Appl. Phys. A 75, 391–395 (2002).CrossRefGoogle Scholar
  20. 20.
    P. K. Krishnamoorthy and S. C. Sircar, Oxidation kinetics of copper in the thin film range*. Acta Meter. 17, 1009–1012 (1969).CrossRefGoogle Scholar
  21. 21.
    J. Iijima, Doctoral Thesis, Tohoku University, 2005.Google Scholar
  22. 22.
    E. P. Fehlner and N. F. Mott, Low-temperature oxidation. Oxid. Met. 2, (1), 59 (1970).CrossRefGoogle Scholar
  23. 23.
    D. D. Eley and P. R. Wilkinson, Adsorption and oxide formation on aluminium films. Proc. R. Soc. Lond. A. 254, (1278), 327 (1960).CrossRefGoogle Scholar
  24. 24.
    A. T. Fromhold Jr, Space-charge modification of the ionic currents for oxide growth. Solid State Ion. 75, 229 (1995).CrossRefGoogle Scholar
  25. 25.
    M. G. Hapase, M. K. Gharpurey and A. B. Biswas, The oxidation of vacuum deposited films of copper. Surf. Sci. 9, (1), 87 (1968).CrossRefGoogle Scholar
  26. 26.
    L. Bouzidi and A. J. Slavin, Ultrathin films of lead oxide on gold: Dependence of stoichiometry, stability, thickness on O2 pressure and annealing temperature. Surf. Sci. 580, (1–3), 195 (2005).CrossRefGoogle Scholar
  27. 27.
    K. Fujita, D. Ando, M. Uchikoshi, K. Mimura and M. Isshiki, New model for low-temperature oxidation of copper single crystal. Appl. Surf. Sci. 276, (1), 347 (2013).CrossRefGoogle Scholar
  28. 28.
    Y. Zhu, K. Mimura and M. Isshiki, Oxidation mechanism of copper at 623–1073 K. Mater. Trans. 43, (9), 2173 (2002).CrossRefGoogle Scholar
  29. 29.
    M. Heim, H. Arwin, J. Chen and R. Pompe, Determination of oxide thickness on an Si2N2O–ZrO2 composite by spectroscopic ellipsometry. J. Eur. Ceram. Soc. 15, (4), 313 (1995).CrossRefGoogle Scholar
  30. 30.
    M. M. Ayad and M. A. Shenashin, Film thickness studies for the chemically synthesized conducting polyaniline. Eur. Polym. J. 39, 1319 (2003).CrossRefGoogle Scholar
  31. 31.
    M. Rauh, P. Wibmann and M. Wolfel, Ellipsometric studies on the oxidation of thin copper films. Thin Solid Films 233, (1–2), 1993 (289).CrossRefGoogle Scholar
  32. 32.
    R. A. Laudise, Growth of Single Crystals, (Prentice-Hall, Englewood Cliffs, 1970), pp. 174–196.Google Scholar
  33. 33.
    H. Uhlig, J. Pickett and J. MacNairn, Initial oxidation rate of nickel and effect of the Curie temperature. Acta Metall. 7, (2), 111 (1959).CrossRefGoogle Scholar
  34. 34.
    H. H. Uhlig, Structure and growth of thin films on metals exposed to oxygen. Corros. Sci. 7, (6), 325 (1967).CrossRefGoogle Scholar
  35. 35.
    T. N. Rhodin Jr, Low temperature oxidation of copper. II. Reaction rate anisoptropy. J. Am. Chem. Soc. 73, (7), 3143 (1951).CrossRefGoogle Scholar
  36. 36.
    S. K. Roy and S. C. Sircar, A critical appraisal of the logarithmic rate law in thin-film formation during oxidation of copper and its alloys. Oxid. Met. 15, 9–20 (1981).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kensuke Fujita Kusano
    • 1
  • Masahito Uchikoshi
    • 1
  • Kouji Mimura
    • 1
  • Minoru Isshiki
    • 1
  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan

Personalised recommendations