Advertisement

Oxidation of Metals

, Volume 81, Issue 1–2, pp 253–265 | Cite as

Preparation of Self-Healing α-Al2O3 Films by Low Temperature Thermal Oxidation

  • Jun Cai
  • Yan Li
  • Jin-ming Wu
  • Guo-ping Ling
Original Paper

Abstract

This paper reports a new approach to lowering the temperature necessary for the preparation of α-Al2O3. Oxidation of Al–Cr alloys, with Cr contents of 18, 23 and 27 %, was performed at temperatures ranging from 620 to 720 °C in air for 100 h. The resulting oxide films were analyzed by SEM, EDS, XRD and XPS. The results showed that α-Al2O3 films were obtained following oxidation of the 18 and 23 wt% Cr alloy samples at 720 °C and that rough surfaces were conducive to the formation of α-Al2O3 such that peened surface samples showed significant α-Al2O3 growth while polished samples showed no oxide by XRD. A 23 wt% Cr sample with a roughened surface exhibited the formation of α-Al2O3 at a temperature of 670 °C. Conversely, only a very thin oxide film was observed on a 27 wt% Cr sample after oxidation at 720 °C.

Keywords

α-Al2O3 Al–Cr alloy Thermal oxidization Low temperature 

Notes

Acknowledgments

This research was supported by the Open Foundation of Key Laboratory for Science and Technology on Surface Physics and Chemistry, China (Grant No. SPC201101).

References

  1. 1.
    A. Aiello, A. Ciampichetti and G. Benamati, Journal of Nuclear Materials 329–333, 1398 (2001).Google Scholar
  2. 2.
    D. L. Smith, J. Konys, T. Muroga and V. Evitkhin, Journal of Nuclear Materials 307–311, 1314 (2002).CrossRefGoogle Scholar
  3. 3.
    M. Fallqvist, M. Olsson and S. Ruppi, Surface & Coatings Technology 202, 837 (2007).CrossRefGoogle Scholar
  4. 4.
    J. M. Andersson, E. Wallin, U. Helmersson and E. P. Münger, Thin Solid Films 513, 57 (2006).CrossRefGoogle Scholar
  5. 5.
    Z. H. Li, Z. P. Yang, N. X. Qiu and G. M. Yang, Journal of Materials Science 46, 3127 (2011).CrossRefGoogle Scholar
  6. 6.
    Q. Fu, C. B. Cao and H. S. Zhu, Thin Solid Films 348, 99 (1999).CrossRefGoogle Scholar
  7. 7.
    I. Rommerskirchen, B. Eltester and H. J. Grabke, Materials and Corrosion 47, 646 (1996).CrossRefGoogle Scholar
  8. 8.
    H. J. Grabke, Intermetallics 7, 1153 (1999).CrossRefGoogle Scholar
  9. 9.
    B. A. Pint, J. L. Moser and P. F. Tortorelli, Journal of Nuclear Materials 367–370, 1150 (2007).CrossRefGoogle Scholar
  10. 10.
    E. Serra, H. Glasbrenner and A. Perujo, Fusion Engineering and Design 41, 149 (1998).CrossRefGoogle Scholar
  11. 11.
    K. Murakami, N. Nishida, K. Osamura and Y. Tomota etc, Acta Materialia 52, 1271 (2004).CrossRefGoogle Scholar
  12. 12.
    H. B. Liu, J. Tao, J. Xu, Z. F. Chen, X. J. Sun and Z. Xu, Journal of Nuclear Materials 378, 134 (2008).CrossRefGoogle Scholar
  13. 13.
    Q. Y. Huang, J. N. Yu, F. R. Wan, J. G. Li and Y. C. Wu, Chinese Journal of Nuclear Science and Engineering 24, 56 (2004).Google Scholar
  14. 14.
    H. X. Lu and H. W. Sun, Materials Science and Engineering A 406, 19 (2005).CrossRefGoogle Scholar
  15. 15.
    C. S. Oh, G. Tomandl, M. H. Lee and S. C. Choi, Journal of Materials Science 31, 5321 (1996).CrossRefGoogle Scholar
  16. 16.
    U. S. Schulz’s, Patent 5,447, 804 (1995).Google Scholar
  17. 17.
    P. Jin, G. Xu, M. Tazawa, K. Yoshimura, D. Music and J. Alami, Journal of Vacuum Science and Technology A 20, 2134 (2002).CrossRefGoogle Scholar
  18. 18.
    Z. G. Zhang, F. Gesmundo, P. Y. Hou and Y. Niu, Corrosion Science 48, 741 (2006).CrossRefGoogle Scholar
  19. 19.
    E. Airiskallio and E. Nurmi etc, Corrosion Science 52, 3394 (2010).CrossRefGoogle Scholar
  20. 20.
    M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1677 (1992).CrossRefGoogle Scholar
  21. 21.
    V. Demange, J. W. Anderegg and J. Ghanbaja, Applied Surface Science 173, 327 (2001).CrossRefGoogle Scholar
  22. 22.
    H. Lu, D. H. Shen, C. L. Bao and Y. X. Wang, Physica Status Solidi (a) 159, 425 (1997).CrossRefGoogle Scholar
  23. 23.
    S. C. Park and Y. B. Park, Journal of Electronic Materials 37, 1565 (2008).CrossRefGoogle Scholar
  24. 24.
    K. Shimizu, K. Kobayashi, G. E. Thompson and G. C. Wood, Oxidation of Metals 36, 1 (1991).CrossRefGoogle Scholar
  25. 25.
    S. Hasani, M. Panjepour and M. Shamanian, Oxidation of Metals 78, 179 (2012).CrossRefGoogle Scholar
  26. 26.
    C. S. Oh, G. Tomandl, M. H. Lee and S. C. Choi, Journal of Materials Science 31, 5321 (1996).CrossRefGoogle Scholar
  27. 27.
    M. A. Trunov, M. Schnoenitz, X. Y. Zhu and E. L. Dreizin, Combustion and Flame 140, 310 (2005).CrossRefGoogle Scholar
  28. 28.
    I. Levin and D. Brandon, Journal of the American Ceramic Society 81, 1995 (1998).CrossRefGoogle Scholar
  29. 29.
    C. S. Tedmon Jr, Journal of the Electrochemical Society 113, 766 (1966).CrossRefGoogle Scholar
  30. 30.
    H. J. T. Ellingham, Journal of the Society of Chemical Industry (London) 63, 125 (1944).CrossRefGoogle Scholar
  31. 31.
    W. W. Smeltzer, Journal of the Electrochemical Society 103, 209 (1956).CrossRefGoogle Scholar
  32. 32.
    B. Pujilaksono, T. Jonsson and M. Halvarsson etc, Oxidation of Metals 70, 163 (2008).CrossRefGoogle Scholar
  33. 33.
    S. Uran, B. Veal, M. Grimsditch, J. Pearson and A. Berger, Oxidation of Metals 54, 73 (2000).CrossRefGoogle Scholar
  34. 34.
    Z. G. Zhang, P. Y. Hou, F. Gesmundo and Y. Niu, Applied Surface Science 253, 881 (2006).CrossRefGoogle Scholar
  35. 35.
    H. S. Lee, D. S. Kim, J. S. Jung, Y. S. Pyoun and K. Shin, Corrosion Science 51, 2826 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations