Oxidation of Metals

, Volume 80, Issue 1–2, pp 191–203 | Cite as

Oxide Structures Formed During the High Temperature Oxidation of Hot Mill Work Rolls

  • N. F. Garza-Montes-de-Oca
  • J. H. Ramírez-Ramírez
  • I. Alvarez-Elcoro
  • W. M. Rainforth
  • R. Colás
Original Paper


The high temperature isothermal oxidation behaviour of work rolls and the oxide structures resulting from this process are presented. Oxidation of these alloys at 615 °C under various environmental conditions resulted in the formation of oxide crystals of different morphologies, depending on the chemical composition of the alloys and the gases present in the oxidant atmosphere. Particularly, the surface oxidation of high speed steel and high chromium iron for work rolls in hot strip mills included the formation of whiskers, platelets, and crystallites. The composition of the oxidant atmosphere also influenced the oxidation rate of the specimens by promoting the formation of protective or non-protective oxides. The reasons for the development of the different oxide morphologies and the effect that the oxides formed on the surface exert on the behaviour of important tribological variables present in the hot rolling of steel such as friction are discussed.


Oxides Work roll Whiskers Platelets 



The authors would like to thank the National Council for Science and Technology in Mexico (CONACyT), the PROMEP program for lecturer development and, Universidad Autónoma de Nuevo Leon (UANL) for the support provided to develop this work.


  1. 1.
    N. Bay and T. Wanheim, Real area of contact and friction stress at high pressure sliding contact. Wear 38, 201 (1976).CrossRefGoogle Scholar
  2. 2.
    J. H. Beynon, Tribology of hot metal forming. Tribology International 31, 73 (1998).CrossRefGoogle Scholar
  3. 3.
    O. Kato, H. Yamamoto, M. Ataka, and K. Nakajima, Mechanisms of surface deterioration of roll for hot strip rolling. ISIJ International 32, 1216 (1992).CrossRefGoogle Scholar
  4. 4.
    F. H. Stott and G. C. Wood, Tribology International 11, 211 (1978).CrossRefGoogle Scholar
  5. 5.
    F. H. Stott, The role of oxidation in the wear of alloys. Tribology International 31, 61 (1998).CrossRefGoogle Scholar
  6. 6.
    M. P. Guerrero, C. R. Flores, A. Pérez, and R. Colás, Modelling heat transfer in hot rolling work rolls. Journal of Materials Processing Technology 94, 52 (1999).CrossRefGoogle Scholar
  7. 7.
    A. Molinari, G. Straffelini, A. Tomasi, A. Biggi, and G. Corbo, Influence of microstructure and chromium content on oxidation behaviour of spin cast high speed steels. Materials Science and Technology 17, 425 (2001).CrossRefGoogle Scholar
  8. 8.
    N. F. Garza-Montes-de-Oca, R. Colás, and W. M. Rainforth, High temperature oxidation of a work roll grade high speed steel. Oxidation of Metals 76, 451 (2011).CrossRefGoogle Scholar
  9. 9.
    A. Bedolla-Jacuinde and W. M. Rainforth, The wear behaviour of high-chromium white cast irons as a function of silicon and mischmetal content. Wear 250, 449 (2001).CrossRefGoogle Scholar
  10. 10.
    R. Peraldi and B. A. Pint, Effect of Cr and Ni contents on the oxidation behavior of ferritic and austenitic model alloys in air with water vapor. Oxidation of Metals 61, 463 (2004).CrossRefGoogle Scholar
  11. 11.
    N. K. Othman, J. Zhang, and D. J. Young, Water vapour effects on Fe–Cr alloy oxidation. Oxidation of Metals 73, 337 (2010).CrossRefGoogle Scholar
  12. 12.
    N. Bertrand, C. Desgranges, D. Poquillon, M. C. Lafont, and D. Monceau, Oxidation of Metals 73, 139 (2010).CrossRefGoogle Scholar
  13. 13.
    N. W. Ashcroft and N. D. Mermin, Solid State Physics,Chapter 30, (Brooks/Cole Belmont, CA, 1976), p. 637.Google Scholar
  14. 14.
    J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser, and W. J. Quadakkers, Iron oxidation at low temperature (260–500° C) in air and the effect of water vapor. Corrosion Science 48, 3428 (2006).CrossRefGoogle Scholar
  15. 15.
    D. Laverde, T. Gómez-Acebo, and F. Castro, Continuous and cyclic oxidation of T91 ferritic steel under steam. Corrosion Science 46, 613 (2004).CrossRefGoogle Scholar
  16. 16.
    H. Asteman, J. -E. Svensson, L. -G. Johansson, and M. Norell, Indication of chromium oxide hydroxide evaporation during oxidation of 304 L at 873 K in the presence of 10 % water vapor. Oxidation of Metals 52, 95 (1999).CrossRefGoogle Scholar
  17. 17.
    A. I. Kahveci and G. E. Welsch, Oxidation of Fe-3 %wt Cr alloy. Oxidation of Metals 26, 213 (1986).CrossRefGoogle Scholar
  18. 18.
    Y. Chang and F. Wei, High temperature oxidation of low alloys steels. Materials Science 24, 14 (1989).CrossRefGoogle Scholar
  19. 19.
    R. Tallman and E.Gulbransen, Crystal morphology and mechanisms of growth of α-Fe2O3 whiskers on iron Technical Report No.1, (Office of Naval Research Materials Science Division, Washington, DC, 1966).Google Scholar
  20. 20.
    C. Santafe′ and C. Borgianni, Oxidation of metals 9(5), 415 (1975).CrossRefGoogle Scholar
  21. 21.
    R. N. Durham, B. Gleeson, and D. J. Young, Factors affecting chromium carbide precipitate dissolution during alloy oxidation. Oxidation of Metals 50, 139 (1998).CrossRefGoogle Scholar
  22. 22.
    C. Rodenburg and W. M. Rainforth, A quantitative analysis of the influence of carbides size distributions on wear behaviour of high speed steel in dry rolling/sliding contact. Acta Materialia 55, 2443 (2007).CrossRefGoogle Scholar
  23. 23.
    N. F. Garza-Montes-de-Oca and W. M. Rainforth, Wear mechanisms experienced by a work roll grade high speed steel under different environmental conditions. Wear 267, 441 (2009).CrossRefGoogle Scholar
  24. 24.
    D. N. Hanlon, W. M. Rainforth, and C. M. Sellars, The rolling/sliding wear response of conventionally processed and spray formed high chromium content cast iron at ambient and elevated temperature. Wear 225, 587 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • N. F. Garza-Montes-de-Oca
    • 1
  • J. H. Ramírez-Ramírez
    • 1
  • I. Alvarez-Elcoro
    • 1
  • W. M. Rainforth
    • 2
  • R. Colás
    • 1
  1. 1.Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo LeónCiudad UniversitariaMexico
  2. 2.Department of Materials Science and EngineeringThe University of SheffieldSheffieldUK

Personalised recommendations