Oxidation of Metals

, Volume 80, Issue 1–2, pp 61–72 | Cite as

Effects of Process Parameters on Mechanical Adhesion of Thermal Oxide Scales on Hot-Rolled Low Carbon Steels

  • Somrerk Chandra-ambhorn
  • Komsan Ngamkham
  • Noppon Jiratthanakul
Original Paper


The present work investigated the effects of process parameters in a hot-rolling line, finishing and coiling temperatures, on mechanical adhesion of scale on low carbon steel substrate using a tensile test. Modification of our previous model to quantify mechanical adhesion energy was proposed for a system consisting of a cracked scale on a metallic substrate by introducing a distribution function of stress in scale. When a linear distribution was assumed, the quantified mechanical adhesion energy lay in the range of 40–890 J m−2. Higher finishing temperature had a prominent role on increasing final scale thickness and weakening scale adhesion. For scale with similar thickness, the mechanical adhesion energy was lowered for the sample subjected to higher temperature gradient between finishing and coiling temperatures. This was considered to be from the increased water vapour in atmosphere due to the higher amount of water used to cool down the steel strip. The mechanical adhesion test was further conducted to attest this assumption. It was found that humidified atmosphere during oxidation weakened the scale adhesion to low carbon steel substrate measured at room temperature.


Finishing temperature Coiling temperature Mechanical adhesion Water vapour 



This research work was granted by Thailand Commission of Higher Education giving via KMUTNB. Sahaviriya Steel Industries PCL. is acknowledged for providing materials for the study. Rajamangala University of Technology Suwannabhumi, Suphanburi Campus, is acknowledged for facilitating the use of tensile testing machine.


  1. 1.
    A. Rahmel and J. Tobolski, Corrosion Science 5, 333 (1965).CrossRefGoogle Scholar
  2. 2.
    C. W. Tuck, M. Odgers and K. Sachs, Corrosion Science 9, 271 (1969).CrossRefGoogle Scholar
  3. 3.
    R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 53, 433 (2000).Google Scholar
  4. 4.
    R. Y. Chen and W. Y. D. Yuen, The 41st MWSP Conference Proceeding, Vol. 37 (ISS, Indianapolis, 1999), pp. 697–705.Google Scholar
  5. 5.
    Y. Kondo, H. Tanei, N. Suzuki, K. Ushioda and M. Maeda, ISIJ International 51, 1696 (2011).CrossRefGoogle Scholar
  6. 6.
    K. Ngamkham, N. Klubvihok, J. Tungtrongpairoj and S. Chandra-ambhorn, Steel Research International, 2012; Metal Forming Special Edition.Google Scholar
  7. 7.
    S. Tanigushi, K. Yamamoto, D. Megumi and T. Shibata, Materials Science and Engineering A308, 250 (2001).Google Scholar
  8. 8.
    Y. Kondo, Steel Research International 81, 98 (2010).Google Scholar
  9. 9.
    S. Chandra-ambhorn, T. Nilsonthi, Y. Wouters and A. Galerie, Steel Research International 81, 130 (2010).Google Scholar
  10. 10.
    M. Trull and J. H. Beynon, Materials Science and Technology 19, 749 (2003).CrossRefGoogle Scholar
  11. 11.
    F. Toscan, L. Antoni, Y. Wouters, M. Dupeux and A. Galerie, Materials Science Forum 461–464, 705 (2004).CrossRefGoogle Scholar
  12. 12.
    S. Chandra-ambhorn, F. Roussl-Dherbey, F. Toscan, Y. Wouters, A. Galerie and M. Dupeux, Materials Science and Technology 23, 497 (2007).CrossRefGoogle Scholar
  13. 13.
    S. Chandra-ambhorn, Y. Wouters, L. Antoni, F. Toscan and A. Galerie, Journal of Power Sources 171, 688 (2007).CrossRefGoogle Scholar
  14. 14.
    J. Mougin, M. Dupeux, L. Antoni and A. Galerie, Materials Science and Engineering A359, 44 (2003).Google Scholar
  15. 15.
    X. Sun, W. N. Liu, E. Stephens and M. A. Khaleel, Journal of Power Sources 176, 167 (2008).CrossRefGoogle Scholar
  16. 16.
    U. R. Evans, An Introduction to Metallic Corrosion, (Arnold, London, 1948).Google Scholar
  17. 17.
    H. E. Evans, International Materials Review 40, 1 (1995).CrossRefGoogle Scholar
  18. 18.
    M. Schütze, Oxidation of Metals 44, 29 (1995).CrossRefGoogle Scholar
  19. 19.
    J. Robertson and M. I. Manning, Materials Science and Technology 6, 81 (1990).CrossRefGoogle Scholar
  20. 20.
    S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, (McGraw-Hill, Singapore, 1970).Google Scholar
  21. 21.
    R. Y. Chen and W. Y. D. Yuen, in Developments in High-Temperature Corrosion and Protection of Materials, eds. W. Gao and Z. Li (Woodhead Publishing, Cambridge, 2008).Google Scholar
  22. 22.
    S. R. J. Saunders, M. Monteiro and F. Rizzo, Progress in Materials Science 53, 775 (2008).CrossRefGoogle Scholar
  23. 23.
    D. Londolt, Corrosion et Chimie de Surface des Métaux, (EPFL, Lausanne, 1997).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Somrerk Chandra-ambhorn
    • 1
  • Komsan Ngamkham
    • 2
  • Noppon Jiratthanakul
    • 3
  1. 1.Department of Materials and Production Technology Engineering, Faculty of EngineeringKing Mongkut’s University of Technology North BangkokBangsue, BangkokThailand
  2. 2.The Sirindhorn International Thai-German Graduate School of EngineeringKing Mongkut’s University of Technology North BangkokBangsue, BangkokThailand
  3. 3.Sahaviriya Steel Industries Public Company LimitedBang SaphanThailand

Personalised recommendations