Advertisement

Oxidation of Metals

, Volume 79, Issue 3–4, pp 383–404 | Cite as

Short-Term Oxidation Studies on Nicrofer-6025HT in Air at Elevated Temperatures for Advanced Coal Based Power Plants

  • Vineet V. Joshi
  • Alan Meier
  • Jens Darsell
  • Ponnusamy Nachimuthu
  • Mark Bowden
  • K. Scott Weil
Original Paper

Abstract

Several advanced air separation unit (ASU) designs being considered for use in coal gasification rely on the use of solid state mixed ionic and electronic conductors. Nicrofer-6025HT, a nickel-based alloy, has been identified as a potential manifold material to transport the hot gases into the ASUs. In the current study, isothermal oxidation tests were conducted on Nicrofer-6025HT in the temperature range of 700–900 °C for up to 24 h. The evolution of oxide scale was evaluated using SEM, XRD, and XPS. The composite surface oxide layer that formed consisted of an outer chromia-rich scale and an inner alumina scale. For the longer times at the higher temperatures evaluated, a NiCr2O4 spinel phase was located at the interface between the alumina and chromia. Based on the experimental results a four-step oxidation model was proposed.

Keywords

Nicrofer-6025HT Alloy 602CA Oxidation XPS 

Notes

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Fossil Energy. The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the United States Department of Energy (U.S. DOE) under Contract DE-AC06-76RLO 1830. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

References

  1. 1.
    J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R. D. Srivastava, International Journal of Greenhouse Gas Control 2(1), 9–20 (2008).Google Scholar
  2. 2.
    A. Leo, S. Liu, and J. C. D. Costa, International Journal of Greenhouse Gas Control 3(4), 357–67 (2009).Google Scholar
  3. 3.
    X. Zhu, S. Sun, Y. He, Y. Cong and W. Yang, Journal of Membrane Science 323, 221–224 (2008).CrossRefGoogle Scholar
  4. 4.
    E. M. Pfaff and M. Zwick, Ceramic Engineering and Science Proceedings 28, 23–31 (2008).Google Scholar
  5. 5.
    Z. Yang, K. S. Weil, D. M. Paxton, and J. W. Stevenson, Journal of Electrochemical Society 150(9) A1188–201 (2003).Google Scholar
  6. 6.
    K. S. Weil, J. T. Darsell, and J. Y. Kim in Ceramic Integration and Joining Technologies from Macro to Nanoscale, eds. M. Singh, T. Ohji, R. Asthana and S. Mathur (John Wiley and Sons, New Jersey 2001) , pp. 91–142.Google Scholar
  7. 7.
    K. S. Weil, C. A. Coyle, J. S. Hardy, J. Y. Kim, and G.-G. Xia, Fuel Cells Bulletin 2004(5), 11–16 (2004).Google Scholar
  8. 8.
    K. S. Weil, J. S. Hardy, J. P. Rice, and J. Y. Kim, Fuel 85(2), 156–62 (2006).Google Scholar
  9. 9.
    D. C. Agarwal and R. R. Winston, in Uhlig’s Corrosion Handbook, Chap. 45. eds. R. W. Revie (John Wiley & Sons, New York, 2005).Google Scholar
  10. 10.
    V. Kherda, and M. Rokel, Khimicheskoe I Neftegazovoe Mashinostroenie 7(1), 31–34 (1995).Google Scholar
  11. 11.
    M. Stanislowski, E. Wessel, T. Markus, L. Singheiser, and W. J. Quadakkers, Solid State Ionics 179(40) 2406–2415 (2008).Google Scholar
  12. 12.
    C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, 1782 (1971).CrossRefGoogle Scholar
  13. 13.
    F. H. Stott and G. C. Wood, Corrosion Science 11, 799–812 (1971).CrossRefGoogle Scholar
  14. 14.
    G. R. Wallwork, and A.Z. Hed, Oxidation of Metals 3(2), 171–184 (1971).Google Scholar
  15. 15.
    B. H. Kear, F. S. Pettit, D. E. Fornwalt, and L. P. Lemaire, Oxidation of Metals 3(6), 557–569 (1971).Google Scholar
  16. 16.
    N. Birks, G. H. Meier, and F. S. Pettit, in Introduction to High-Temperature Oxidation of Metals (Cambridge University Press, New York, 2009), pp. 101–163.Google Scholar
  17. 17.
    B. Chattopadhyay and G. C. Wood, Oxidation of Metals 2, 373–399 (1970).CrossRefGoogle Scholar
  18. 18.
    G. M. Ecer and G. H. Meier, Oxidation of Metals 13, 119–158 (1979).CrossRefGoogle Scholar
  19. 19.
    A. Duval, F. Miserque, M. Tabarant, J. P. Nogier, and A. Gédéon, Oxidation of Metals 74, 2010 (215–238).Google Scholar
  20. 20.
    G. E. Wasielewski, and R. A. Robb, in The Superalloys, eds. C. S. Sims and W. Hagel (John Wiley & Sons, New York, 1972), p. 287.Google Scholar
  21. 21.
    R. Prescott, and M. J. Graham, Oxidation of Metals 38(3–4) 233–254 (1992).Google Scholar
  22. 22.
    F. H. Stott, G. C. Wood, and M. G. Hobby, Oxidation of Metals 3(2), 103–113 (1971).Google Scholar
  23. 23.
    H. Buscail, S. Perrier, and C. Josse, Materials and Corrosion 62(5), 416–422 (2011).Google Scholar
  24. 24.
    S. Seal, S. C. Kuiry, and L. A. Bracho, Oxidation of Metals 57(3–4) 297–322 (2002).Google Scholar
  25. 25.
    S. Seal, S. C. Kuiry, and L. A. Bracho Oxidation of Metals, 56(5–6) 583–603 (2001).Google Scholar
  26. 26.
    J. Huang, H. Fang, X. Fu, F. Huang, H. Wan, Q. Zhang, S. Deng and J. Zu, Oxidation of Metals 53, 273 (2000).CrossRefGoogle Scholar
  27. 27.
    F. H. Stott, G. C. Wood, and J. Stringer, Oxidation of Metals, 44(1–2), 113–145 (1995).Google Scholar
  28. 28.
    E. Alvarez, A. Meier, K. S. Weil, and Z. Yang, International Journal of Applied Ceramic Technology, 8(1), 33–41 (2011).Google Scholar
  29. 29.
    C. M. Cotell, G. J. Yurek, R. J. Hussey, D. F. Mitchell, and M. J. Graham, Oxidation of Metals, 34(3–4), 173–200 (1990).Google Scholar
  30. 30.
    V. Joshi, M.S. Thesis (Alfred University, Alfred, NY, 2010).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Vineet V. Joshi
    • 1
  • Alan Meier
    • 2
  • Jens Darsell
    • 1
  • Ponnusamy Nachimuthu
    • 1
  • Mark Bowden
    • 1
  • K. Scott Weil
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandUSA
  2. 2.Department of Metallurgical and Materials EngineeringMontana TechButteUSA

Personalised recommendations