Skip to main content
Log in

Steam Effects on the Oxidation Behaviour of Al2O3-Scale Forming Ni-Based Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The effects of steam on the 1,000 °C oxidation behavior of Al2O3-scale forming Ni-based alloys were studied by conducting tests in dry air and air + 30 % steam (wet air) gas environments. It was found that the critical concentration of Al (N * Al ) to form a continuous alumina scale is increased when the environment is wet air. From the morphology of and the depth at which the internal oxides formed in the two oxidizing conditions, it was determined that the enrichment factor α remained the same in dry and wet air, though the internal-oxide precipitates were coarser and their average spacing greater in the wet air. Based on an assessment of the parameters contained in Wagner’s criterion for transition from internal oxidation to external scale formation, it was deduced that the only factor that can change the critical concentration N * Al to the extent measured is the critical volume fraction f * v .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. S. Pettit, Transactions of the metallurgical society of AIME 239, 1296 (1967).

    CAS  Google Scholar 

  2. C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, 1782 (1971).

    Article  CAS  Google Scholar 

  3. I. A. Kvernes and P. Kofstad, Metallurgical Transactions 3, 1511 (1972).

    Article  CAS  Google Scholar 

  4. M. C. Maris-Sida, G. H. Meier and F. S. Pettit, Metallurgical and Materials Transactions A 34A, 2609 (2003).

    Article  CAS  Google Scholar 

  5. R. Janakiraman, G. H. Meier and F. S. Pettit, Metallurgical and Materials Transactions A 30A, 2905 (1999).

    Article  CAS  Google Scholar 

  6. F. A. Elrefaie, A. Manolescu and W. W. Smeltzer, Journal of the Electrochemical Society 132, 2489 (1985).

    Article  CAS  Google Scholar 

  7. H. C. Yi, S. W. Guan, W. W. Smeltzer and A. Petric, Acta Metallurgica et Materialia 42, 981 (1994).

    Article  CAS  Google Scholar 

  8. J. A. Nesbitt, Journal of the Electrochemical Society 136, 1511 (1989).

    Article  CAS  Google Scholar 

  9. J. A. Nesbitt, Journal of the Electrochemical Society 136, 1518 (1989).

    Article  CAS  Google Scholar 

  10. F. Gesmundo and F. Viani, Oxidation of Metals 25, 269 (1986).

    Article  CAS  Google Scholar 

  11. F. Gesmundo, F. Viani and Y. Niu, Oxidation of Metals 42, 285 (1994).

    Article  CAS  Google Scholar 

  12. Y. Niu and F. Gesmundo, Oxidation of Metals 65, 329 (2006).

    Article  CAS  Google Scholar 

  13. S. Wang, F. Gesmundo and Y. Niu, Oxidation of Metals 72, 279 (2009).

    Article  CAS  Google Scholar 

  14. C. Wagner, Z. Elektrochem 63, 772 (1959).

    CAS  Google Scholar 

  15. C. Wagner, Journal of the Electrochemical Society 103, 571 (1956).

    Article  CAS  Google Scholar 

  16. M. A. Alvin, Department of Energy, National Energy Technology Laboratory, Pittsburgh, OA, USA (private communication).

  17. E. Essuman, G. H. Meier, J. Zurek, M. Hansel and W. J. Quadakkers, Oxidation of Metals 69, 143 (2008).

    Article  CAS  Google Scholar 

  18. J. Zurek, M. Michalik, F. Schmitz, T.-U. Kern, L. Singheiser and W. J. Quadakkers, Oxidation of Metals 63, 401 (2005).

    Article  CAS  Google Scholar 

  19. S. Hayashi and T. Narita, Oxidation of Metals 56, 251 (2001).

    Article  CAS  Google Scholar 

  20. A. Rahmel and T. Tobolshi, Corrosion Science 5, 333 (1965).

    Article  CAS  Google Scholar 

  21. J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkella, L. Singheiser and W. J. Quadakkers, Corrosion Science 48, 3428 (2006).

    Article  CAS  Google Scholar 

  22. A. Galerie, S. Henry, Y. Wouters, M. Mermoux, J. P. Petit and L. Anton, Materials at High Temperatures 22, 105 (2005).

    Article  CAS  Google Scholar 

  23. Y. Ikeda and K. Nii, Transactions of National Research Institute for Metals 26, 52 (1984).

    Google Scholar 

  24. W. Zhao, Ph.D thesis, University of Pittsburgh, 2012.

  25. R. A. Rapp, Corrosion. 21, 382 (1965).

    Article  CAS  Google Scholar 

  26. F. Maak, Z. Metallkde 52, 545 (1961).

    CAS  Google Scholar 

  27. W. Gust, H. B. Hintz, A. Lodding, H. Odelius and B. Predel, Physica Status Solidi 64, 187 (1981).

    Article  CAS  Google Scholar 

  28. A. Green and N. Swindells, Materials Science and Technology 1, 101 (1985).

    Article  CAS  Google Scholar 

  29. M. M. P. Janssen, Metallurgical Transactions 4, 1623 (1973).

    CAS  Google Scholar 

  30. J. L. Meijering, Advanced Materials Research 5, 81 (1971).

    Google Scholar 

  31. A. R. Setiawan, M. H. B. Ani, M. Ueda, K. Kawamura and T. Maruyama, ISIJ International 50, 259 (2010).

    Article  CAS  Google Scholar 

  32. L. S. Draken, Transactions. AIME. 150, 157 (1942).

    Google Scholar 

  33. R. T. DeHoff and F. N. Rhines, in Quantitative Microscopy, (Mcgraw-Hill, New York, 1991), p. 46.

  34. R. A. Rapp, Acta. Metallurgica. 9, 730 (1961).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the U.S. Office of Naval Research, award N000014-09-1-1127 and managed by Dr. David Shifler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, W., Gleeson, B. Steam Effects on the Oxidation Behaviour of Al2O3-Scale Forming Ni-Based Alloys. Oxid Met 79, 613–625 (2013). https://doi.org/10.1007/s11085-013-9359-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9359-1

Keywords

Navigation