Oxidation of Metals

, Volume 79, Issue 5–6, pp 613–625 | Cite as

Steam Effects on the Oxidation Behaviour of Al2O3-Scale Forming Ni-Based Alloys

  • Wei Zhao
  • Brian Gleeson
Original Paper


The effects of steam on the 1,000 °C oxidation behavior of Al2O3-scale forming Ni-based alloys were studied by conducting tests in dry air and air + 30 % steam (wet air) gas environments. It was found that the critical concentration of Al (N Al * ) to form a continuous alumina scale is increased when the environment is wet air. From the morphology of and the depth at which the internal oxides formed in the two oxidizing conditions, it was determined that the enrichment factor α remained the same in dry and wet air, though the internal-oxide precipitates were coarser and their average spacing greater in the wet air. Based on an assessment of the parameters contained in Wagner’s criterion for transition from internal oxidation to external scale formation, it was deduced that the only factor that can change the critical concentration N Al * to the extent measured is the critical volume fraction f v * .


Steam effect Oxidation map Ni-based alloy Critical concentration of Al 



This research is supported by the U.S. Office of Naval Research, award N000014-09-1-1127 and managed by Dr. David Shifler.


  1. 1.
    F. S. Pettit, Transactions of the metallurgical society of AIME 239, 1296 (1967).Google Scholar
  2. 2.
    C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, 1782 (1971).CrossRefGoogle Scholar
  3. 3.
    I. A. Kvernes and P. Kofstad, Metallurgical Transactions 3, 1511 (1972).CrossRefGoogle Scholar
  4. 4.
    M. C. Maris-Sida, G. H. Meier and F. S. Pettit, Metallurgical and Materials Transactions A 34A, 2609 (2003).CrossRefGoogle Scholar
  5. 5.
    R. Janakiraman, G. H. Meier and F. S. Pettit, Metallurgical and Materials Transactions A 30A, 2905 (1999).CrossRefGoogle Scholar
  6. 6.
    F. A. Elrefaie, A. Manolescu and W. W. Smeltzer, Journal of the Electrochemical Society 132, 2489 (1985).CrossRefGoogle Scholar
  7. 7.
    H. C. Yi, S. W. Guan, W. W. Smeltzer and A. Petric, Acta Metallurgica et Materialia 42, 981 (1994).CrossRefGoogle Scholar
  8. 8.
    J. A. Nesbitt, Journal of the Electrochemical Society 136, 1511 (1989).CrossRefGoogle Scholar
  9. 9.
    J. A. Nesbitt, Journal of the Electrochemical Society 136, 1518 (1989).CrossRefGoogle Scholar
  10. 10.
    F. Gesmundo and F. Viani, Oxidation of Metals 25, 269 (1986).CrossRefGoogle Scholar
  11. 11.
    F. Gesmundo, F. Viani and Y. Niu, Oxidation of Metals 42, 285 (1994).CrossRefGoogle Scholar
  12. 12.
    Y. Niu and F. Gesmundo, Oxidation of Metals 65, 329 (2006).CrossRefGoogle Scholar
  13. 13.
    S. Wang, F. Gesmundo and Y. Niu, Oxidation of Metals 72, 279 (2009).CrossRefGoogle Scholar
  14. 14.
    C. Wagner, Z. Elektrochem 63, 772 (1959).Google Scholar
  15. 15.
    C. Wagner, Journal of the Electrochemical Society 103, 571 (1956).CrossRefGoogle Scholar
  16. 16.
    M. A. Alvin, Department of Energy, National Energy Technology Laboratory, Pittsburgh, OA, USA (private communication).Google Scholar
  17. 17.
    E. Essuman, G. H. Meier, J. Zurek, M. Hansel and W. J. Quadakkers, Oxidation of Metals 69, 143 (2008).CrossRefGoogle Scholar
  18. 18.
    J. Zurek, M. Michalik, F. Schmitz, T.-U. Kern, L. Singheiser and W. J. Quadakkers, Oxidation of Metals 63, 401 (2005).CrossRefGoogle Scholar
  19. 19.
    S. Hayashi and T. Narita, Oxidation of Metals 56, 251 (2001).CrossRefGoogle Scholar
  20. 20.
    A. Rahmel and T. Tobolshi, Corrosion Science 5, 333 (1965).CrossRefGoogle Scholar
  21. 21.
    J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkella, L. Singheiser and W. J. Quadakkers, Corrosion Science 48, 3428 (2006).CrossRefGoogle Scholar
  22. 22.
    A. Galerie, S. Henry, Y. Wouters, M. Mermoux, J. P. Petit and L. Anton, Materials at High Temperatures 22, 105 (2005).CrossRefGoogle Scholar
  23. 23.
    Y. Ikeda and K. Nii, Transactions of National Research Institute for Metals 26, 52 (1984).Google Scholar
  24. 24.
    W. Zhao, Ph.D thesis, University of Pittsburgh, 2012.Google Scholar
  25. 25.
    R. A. Rapp, Corrosion. 21, 382 (1965).CrossRefGoogle Scholar
  26. 26.
    F. Maak, Z. Metallkde 52, 545 (1961).Google Scholar
  27. 27.
    W. Gust, H. B. Hintz, A. Lodding, H. Odelius and B. Predel, Physica Status Solidi 64, 187 (1981).CrossRefGoogle Scholar
  28. 28.
    A. Green and N. Swindells, Materials Science and Technology 1, 101 (1985).CrossRefGoogle Scholar
  29. 29.
    M. M. P. Janssen, Metallurgical Transactions 4, 1623 (1973).Google Scholar
  30. 30.
    J. L. Meijering, Advanced Materials Research 5, 81 (1971).Google Scholar
  31. 31.
    A. R. Setiawan, M. H. B. Ani, M. Ueda, K. Kawamura and T. Maruyama, ISIJ International 50, 259 (2010).CrossRefGoogle Scholar
  32. 32.
    L. S. Draken, Transactions. AIME. 150, 157 (1942).Google Scholar
  33. 33.
    R. T. DeHoff and F. N. Rhines, in Quantitative Microscopy, (Mcgraw-Hill, New York, 1991), p. 46.Google Scholar
  34. 34.
    R. A. Rapp, Acta. Metallurgica. 9, 730 (1961).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPittsburghUS

Personalised recommendations