Oxidation of Metals

, Volume 79, Issue 1–2, pp 65–72 | Cite as

A Possible Mechanism for Protrusions Formation at the Metal/Oxide Interface During Short Time Oxidation of Ferritic Stainless Steel

  • Jérôme Issartel
  • Rafael Estevez
  • Guillaume Parry
  • Valérie Parry
  • Sébastien Martoia
  • Yves Wouters
Original Paper


High temperature oxidation of ferritic stainless steel for short durations leads to the formation of an original morphology at the metal/oxide interface. This interface is composed of metallic protrusions localized in a chromium-rich oxide layer through a discontinuous silica film. In this paper we propose a mechanism based on preferential diffusion paths for the oxygen through the oxide that are governed by the distribution of the hydrostatic pressure in this layer. We point out that the mechanical contrast between the oxide and the metal subjected to creep can be critical for the hydrostatic pressure gradient magnitude inside the oxide layer. This observation is likely to promote the formation of protrusions for specific conditions of temperature and time of exposure to oxidation.


Stainless steel Oxidation Interface Modeling Finite element method Stress assisted diffusion 


  1. 1.
    S. Gonzales, L. Combarmond, M.-T. Tran, Y. Wouters and A. Galerie, Materials Science Forum 595–598, 2008 (601).CrossRefGoogle Scholar
  2. 2.
    I. Saeki, H. Konno and R. Furuichi, Corrosion Science 38, 1996 (19).CrossRefGoogle Scholar
  3. 3.
    I. Saeki, H. Konno and R. Furuichi, Corrosion Science 38, 1996 (1595).CrossRefGoogle Scholar
  4. 4.
    I. Saeki, H. Konno, R. Furuichi, T. Nakamura, K. Mabuchi and M. Itoh, Corrosion Science 40, 1998 (191).CrossRefGoogle Scholar
  5. 5.
    L. Mikkelsen, S. Linferoth and J. Bilde-Sorensen, Materials Science Forum 461–464, 2004 (117).CrossRefGoogle Scholar
  6. 6.
    F. H. Stott and F. Wei, Oxidation of Metals 31, 1989 (369).CrossRefGoogle Scholar
  7. 7.
    J. Issartel, S. Martoia, F. Charlot, V. Parry, G. Parry, R. Estevez and Y. Wouters, Corrosion Science 2012. doi: 10.1016/j.corsci.2012.02.02.Google Scholar
  8. 8.
    J. Issartel, S. Martoia, F. Charlot, V. Parry, Y. Wouters and A. Galerie, Materials at High Temperatures 28, 2011 (274).CrossRefGoogle Scholar
  9. 9.
    G. Bamba, Influence du silicium sur l’oxydation thermique des aciers inoxydables ferritiques Fe-Cr sous oxygène ou dans la vapeur d’eau, PhD Thesis, Grenoble-INP, 2006.Google Scholar
  10. 10.
    J. R. Nicholls, D. J. Hall and P. F. Tortorelli, Materials at High Temperatures 12, 1994 (141).Google Scholar
  11. 11.
    P. Sofronis and R. M. McMeeking, Journal of the Mechanics and Physics of Solids 37, (3), 1989 (317–350).CrossRefGoogle Scholar
  12. 12.
    E. Park, B. Huning and M. Spiegel, Applied Surface Science 249, 2005 (127).CrossRefGoogle Scholar
  13. 13.
    A. Srisrual, S. Coindeau, A. Galerie, J. P. Petit and Y. Wouters, Corrosion Science 51, 2009 (562).CrossRefGoogle Scholar
  14. 14.
    P. Kofstad, Oxidation of Metals 24, 1985 (265).CrossRefGoogle Scholar
  15. 15.
    I. G. Wright, B. A. Pint and P. F. Tortorelli, Oxidation of Metals 55, 2001 (333).CrossRefGoogle Scholar
  16. 16.
    N. Ni, S. Lozano-Perez, J. M. Sykes, G. D. W. Smith and C. R. M. Grovenor, Corrosion Science 53, 2011 (4073).CrossRefGoogle Scholar
  17. 17.
    S. Henry, A. Galerie and L. Antoni, Materials Science Forum 369–372, 2001 (353).CrossRefGoogle Scholar
  18. 18.
    A. Galerie, Y. Wouters and M. Caillet, Materials Science Forum 369–372, 2001 (231).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jérôme Issartel
    • 1
    • 2
  • Rafael Estevez
    • 1
  • Guillaume Parry
    • 1
  • Valérie Parry
    • 1
  • Sébastien Martoia
    • 2
  • Yves Wouters
    • 1
  1. 1.SIMaP, UMR CNRS 5266, Grenoble INPSaint Martin D’heres CedexFrance
  2. 2.APERAM Isbergues Research & DevelopmentIsberguesFrance

Personalised recommendations