Oxidation of Metals

, Volume 79, Issue 1–2, pp 15–28 | Cite as

Effect of Specimen Thickness on the Oxidation Rate of High Chromium Ferritic Steels: The Significance of Intrinsic Alloy Creep Strength

  • Cristina Asensio-Jimenez
  • Leszek Niewolak
  • Heike Hattendorf
  • Bernd Kuhn
  • Pawel Huczkowski
  • Lorenz Singheiser
  • Willem Joseph Quadakkers
Original Paper


Previous studies revealed that initial sample thickness affects the growth rate of oxide scales formed during 800 or 900 °C air exposure. The effect is partially related to differences in depletion of minor alloying additions such as Mn, Ti, La in thick and thin specimens. However, it has previously been proposed that the specimen thickness dependence is partially governed by differences in creep strength of thick and thin substrates. To investigate this hypothesis, discontinuous air oxidation experiments were carried out with the Laves phase strengthened ferritic steel Crofer 22 H at 800 °C. Comparing the data for solution annealed and pre-aged (500 h, 900 °C) materials it could be shown that intrinsic creep strength of the alloy substantially affects oxidation rates. The observations can qualitatively be explained by assuming the relaxation of oxide growth stresses by plastic deformation of the metallic substrate to be an important parameter affecting the kinetics of oxide scale growth.


Ferritic steel Creep strength Oxidation rate Laves phase 



The authors are grateful to Mr. H. Cosler, Ms. A. Kick and Mr. R. Mahnke for carrying out the oxidation tests, Mr. V. Gutzeit and Mr. J. Bartsch for optical microscopy, Dr. E. Wessel and Dr. D. Grüner for SEM investigations.


  1. 1.
    P. Kofstad and R. Bredesen, Solid State Ionics 52, 69 (1992).CrossRefGoogle Scholar
  2. 2.
    W. J. Quadakkers, H. Greiner, W. Köck, in Proceedings 1st European Solid Oxide Fuel Cell Forum, eds. U. Bossel (Baden, Switzerland, 1994), p. 525.Google Scholar
  3. 3.
    W. J. Quadakkers, J. Piron-Abellan, V. Shemet and L. Singheiser, Materials at High Temperatures 20, 115 (2003).CrossRefGoogle Scholar
  4. 4.
    J. Piron-Abellan, V. Shemet, F. Tietz, L. Singheiser, and W.J. Quadakkers, Proceedings The Electrochemical Society 16, 811 (2001).Google Scholar
  5. 5.
    R. Hojda, W. Heimann, and W.J. Quadakkers, ThyssenKrupp Techforum, 20, (2003).Google Scholar
  6. 6.
  7. 7.
    P. Huczkowski, S. Ertl, N. Christiansen, T. Höfler, V. Shemet, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures 22, 79 (2005).CrossRefGoogle Scholar
  8. 8.
    P. Huczkowski, and W. J. Quadakkers, Effect of geometry and composition of Cr steels on oxide scale properties relevant for interconnector applications in solid oxide fuel cells (SOFCs), Vol. 65 (Report Forschungszentrum Juelich, Energy Technology, 2007) ISBN 978-3-89336-484-8.Google Scholar
  9. 9.
    J. Froitzheim, G. H. Meier, L. Niewolak, P. J. Ennis, H. Hattendorf, L. Singheiser and W. J. Quadakkers, Journal of Power Sources 178, 163 (2008).CrossRefGoogle Scholar
  10. 10.
    B. Kuhn, C. Asensio Jimenez, L. Niewolak, T. Hüttel, T. Beck, H. Hattendorf, L. Singheiser and W. J. Quadakkers, Materials Science and Engineering A 528, 5888 (2011).CrossRefGoogle Scholar
  11. 11.
    L. Singheiser, P. Huczkowski, T. Markus, and W. J. Quadakkers, High Temperature Corrosion Issues for Metallic Materials in Solid Oxide Fuel Cells, Shreir’s Corrosion, 2010, Chapter 1.19, pp. 482–517.Google Scholar
  12. 12.
    J. Zurek, D. J. Young, E. Essuman, M. Hänsel, H. J. Penkalla, L. Niewolak and W. J. Quadakkers, Materials Science and Engineering A 477, 259 (2008).CrossRefGoogle Scholar
  13. 13.
    J. Zurek, G. H. Meier, E. Essuman, M. Hänsel, L. Singheiser and W. J. Quadakkers, Journal of Alloys and Compounds 467, 450 (2009).CrossRefGoogle Scholar
  14. 14.
    J. Froitzheim, Ferritic steel interconnects and their interactions with Ni base anodes in solid oxide fuel cells (SOFC). 2008, PhD thesis, RWTH: Aachen, Germany, 2008, Report Forschungszentrum Jülich, Energy & Environment, vol. 16, ISBN 978-3-89336-540-1.Google Scholar
  15. 15.
    J. E. Hammer, S. J. Laney, R. W. Jackson, K. Coyne, F. S. Pettit, G. H. Meier, Oxidation of Metals, 67, 1 (2007).Google Scholar
  16. 16.
    L. Niewolak, Forschungszentrum Jülich, 2011, unpublished results.Google Scholar
  17. 17.
    P. Huczkowski, N. Christiansen, V. Shemet, J. Piron-Abellan, L. Singheiser and W. J. Quadakkers, Materials and Corrosion 55, 825 (2004).CrossRefGoogle Scholar
  18. 18.
    P. Huczkowski, N. Christiansen, V. Shemet, J. Piron-Abellan, L. Singheiser and W. J. Quadakkers, Journal of Fuel Cell Science and Technology 1, 30 (2004).CrossRefGoogle Scholar
  19. 19.
    Y. T. Chiu and C. K. Lin, Journal of Power Sources 198, 149 (2012).CrossRefGoogle Scholar
  20. 20.
    R. W. Evans and B. Wilshire, Introduction to Creep, (The Institute of Materials, London, 1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Cristina Asensio-Jimenez
    • 1
  • Leszek Niewolak
    • 1
  • Heike Hattendorf
    • 2
  • Bernd Kuhn
    • 1
  • Pawel Huczkowski
    • 1
  • Lorenz Singheiser
    • 1
  • Willem Joseph Quadakkers
    • 1
  1. 1.Research Centre JülichInstitute of Energy and Climate Research IEK-2JülichGermany
  2. 2.ThyssenKrupp/VDMAltenaGermany

Personalised recommendations