Skip to main content
Log in

Effect of Specimen Thickness on the Oxidation Rate of High Chromium Ferritic Steels: The Significance of Intrinsic Alloy Creep Strength

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Previous studies revealed that initial sample thickness affects the growth rate of oxide scales formed during 800 or 900 °C air exposure. The effect is partially related to differences in depletion of minor alloying additions such as Mn, Ti, La in thick and thin specimens. However, it has previously been proposed that the specimen thickness dependence is partially governed by differences in creep strength of thick and thin substrates. To investigate this hypothesis, discontinuous air oxidation experiments were carried out with the Laves phase strengthened ferritic steel Crofer 22 H at 800 °C. Comparing the data for solution annealed and pre-aged (500 h, 900 °C) materials it could be shown that intrinsic creep strength of the alloy substantially affects oxidation rates. The observations can qualitatively be explained by assuming the relaxation of oxide growth stresses by plastic deformation of the metallic substrate to be an important parameter affecting the kinetics of oxide scale growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Kofstad and R. Bredesen, Solid State Ionics 52, 69 (1992).

    Article  CAS  Google Scholar 

  2. W. J. Quadakkers, H. Greiner, W. Köck, in Proceedings 1st European Solid Oxide Fuel Cell Forum, eds. U. Bossel (Baden, Switzerland, 1994), p. 525.

  3. W. J. Quadakkers, J. Piron-Abellan, V. Shemet and L. Singheiser, Materials at High Temperatures 20, 115 (2003).

    Article  CAS  Google Scholar 

  4. J. Piron-Abellan, V. Shemet, F. Tietz, L. Singheiser, and W.J. Quadakkers, Proceedings The Electrochemical Society 16, 811 (2001).

    Google Scholar 

  5. R. Hojda, W. Heimann, and W.J. Quadakkers, ThyssenKrupp Techforum, 20, (2003).

  6. Web site http://www.thyssenkrupp-vdm.com/downloads/materialdatenblaetter.html?L=1.

  7. P. Huczkowski, S. Ertl, N. Christiansen, T. Höfler, V. Shemet, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures 22, 79 (2005).

    Article  Google Scholar 

  8. P. Huczkowski, and W. J. Quadakkers, Effect of geometry and composition of Cr steels on oxide scale properties relevant for interconnector applications in solid oxide fuel cells (SOFCs), Vol. 65 (Report Forschungszentrum Juelich, Energy Technology, 2007) ISBN 978-3-89336-484-8.

  9. J. Froitzheim, G. H. Meier, L. Niewolak, P. J. Ennis, H. Hattendorf, L. Singheiser and W. J. Quadakkers, Journal of Power Sources 178, 163 (2008).

    Article  CAS  Google Scholar 

  10. B. Kuhn, C. Asensio Jimenez, L. Niewolak, T. Hüttel, T. Beck, H. Hattendorf, L. Singheiser and W. J. Quadakkers, Materials Science and Engineering A 528, 5888 (2011).

    Article  CAS  Google Scholar 

  11. L. Singheiser, P. Huczkowski, T. Markus, and W. J. Quadakkers, High Temperature Corrosion Issues for Metallic Materials in Solid Oxide Fuel Cells, Shreir’s Corrosion, 2010, Chapter 1.19, pp. 482–517.

  12. J. Zurek, D. J. Young, E. Essuman, M. Hänsel, H. J. Penkalla, L. Niewolak and W. J. Quadakkers, Materials Science and Engineering A 477, 259 (2008).

    Article  Google Scholar 

  13. J. Zurek, G. H. Meier, E. Essuman, M. Hänsel, L. Singheiser and W. J. Quadakkers, Journal of Alloys and Compounds 467, 450 (2009).

    Article  CAS  Google Scholar 

  14. J. Froitzheim, Ferritic steel interconnects and their interactions with Ni base anodes in solid oxide fuel cells (SOFC). 2008, PhD thesis, RWTH: Aachen, Germany, 2008, Report Forschungszentrum Jülich, Energy & Environment, vol. 16, ISBN 978-3-89336-540-1.

  15. J. E. Hammer, S. J. Laney, R. W. Jackson, K. Coyne, F. S. Pettit, G. H. Meier, Oxidation of Metals, 67, 1 (2007).

  16. L. Niewolak, Forschungszentrum Jülich, 2011, unpublished results.

  17. P. Huczkowski, N. Christiansen, V. Shemet, J. Piron-Abellan, L. Singheiser and W. J. Quadakkers, Materials and Corrosion 55, 825 (2004).

    Article  CAS  Google Scholar 

  18. P. Huczkowski, N. Christiansen, V. Shemet, J. Piron-Abellan, L. Singheiser and W. J. Quadakkers, Journal of Fuel Cell Science and Technology 1, 30 (2004).

    Article  CAS  Google Scholar 

  19. Y. T. Chiu and C. K. Lin, Journal of Power Sources 198, 149 (2012).

    Article  CAS  Google Scholar 

  20. R. W. Evans and B. Wilshire, Introduction to Creep, (The Institute of Materials, London, 1985).

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. H. Cosler, Ms. A. Kick and Mr. R. Mahnke for carrying out the oxidation tests, Mr. V. Gutzeit and Mr. J. Bartsch for optical microscopy, Dr. E. Wessel and Dr. D. Grüner for SEM investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Niewolak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asensio-Jimenez, C., Niewolak, L., Hattendorf, H. et al. Effect of Specimen Thickness on the Oxidation Rate of High Chromium Ferritic Steels: The Significance of Intrinsic Alloy Creep Strength. Oxid Met 79, 15–28 (2013). https://doi.org/10.1007/s11085-012-9323-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9323-5

Keywords

Navigation