Oxidation of Metals

, Volume 79, Issue 1–2, pp 179–200 | Cite as

Gas Phase Initial Oxidation of Incoloy 800 Surfaces

  • Michael W. Edwards
  • N. Stewart McIntyre
Original Paper


The surface oxidation of Incoloy 800 was studied using dilute O2 gas at temperatures of 300 °C. Samples with two differing grain sizes were studied using time-of flight secondary ion mass spectrometry (ToF–SIMS) and X-ray photoelectron spectroscopy (XPS) as primary analysis tools. A multi-layered oxide film was detected and was composed of an exterior gamma-Fe2O3 with a Cr2O3 layer at the oxide–metal interface also containing significant concentrations of NiCr2O4. Minor concentrations of another spinel oxide, NiFe2O4 were distributed throughout the film. The kinetics of oxidation growth was found to follow a direct logarithmic relationship for both grain sizes, suggesting that the oxide would be a suitably protective. Very small oxide nodules formed at later stages, particularly for the small grained samples. A protocol for assessment of XPS spectral envelopes is advanced. The method measures the percent residual intensities remaining after spectral subtraction of reference spectra and appears to be an effective means for screening of possible components.


Nickel alloy oxidation XPS SIMS Oxide growth kinetics Alloy 800 



The assistance of Dr. H.Y. Nie and Mr. R. Davidson of Surface Science Western for SIMS and SEM measurements is appreciated. Dr. B. Payne is thanked for his advice on XPS measurements. The financial assistance of the Natural Sciences and Engineering Research Council of Canada (NSERC) and the CANDU Owners Group is also appreciated.


  1. 1.
    D. G. Hurst, Canada Enters the Nuclear Age: A Technical History of Atomic Energy of Canada Limited (McGill-Queen’s University Press, Canada, 1997), p. 279.Google Scholar
  2. 2.
    Incoloy Alloy 800H and HT Specification Sheet, Special Metals Corporation,
  3. 3.
    S. J. Patel, Journal of the Minerals, Metals and Materials Society 58, 18 (2006).CrossRefGoogle Scholar
  4. 4.
    W. F. Chu and A. Rahmel, Oxidation of Metals 15, 331 (1981).CrossRefGoogle Scholar
  5. 5.
    P. G. Stone, J. Orr, and J. G. Guest, Journal of the British Nuclear Energy Society 14, 15 (1975).Google Scholar
  6. 6.
    N. Cabrera and N. F. Mott, Reports on Progress in Physics 12, 163 (1948–1949).CrossRefGoogle Scholar
  7. 7.
    G. C. Wood, Oxidation of Metals 2, 11 (1970).CrossRefGoogle Scholar
  8. 8.
    G. C. Wood and F. H. Stott, Materials Science and Technology 3, 519 (1987).Google Scholar
  9. 9.
    J. C. Langevoort, I. Sutherland, L. J. Hanekamp, and P. J. Gellings, Applied Surface Science 28, 167 (1987).CrossRefGoogle Scholar
  10. 10.
    J. C. Langevoort, L. J. Hanekamp, and P. J. Gellings, Applied Surface Science 28, 189 (1987).CrossRefGoogle Scholar
  11. 11.
    I. K. Koshelev, A. P. Paulikas, M. Beno, G. Jennings, J. Linton, M. Grimsditch, S. Uran, and W. Veal, Oxidation of Metals 68, 37 (2007).CrossRefGoogle Scholar
  12. 12.
    A. Al-Meshari and J. Little, Oxidation of Metals 69, 109 (2008).CrossRefGoogle Scholar
  13. 13.
    D. Rohnert, F. Phillipp, H. Reuther, T. Weber, E. Wessel, and M. Schutze, Oxidation of Metals 68, 271 (2007).CrossRefGoogle Scholar
  14. 14.
    M. Yamawaki, M. Mito, and K. Masayoshi, Journal of the Japan Institute of Metals 18, 567 (1977).Google Scholar
  15. 15.
    N. Hussain, K. A. Shahid, I. H. Khan, and S. Rahman, Oxidation of Metals 41, 251 (1994).CrossRefGoogle Scholar
  16. 16.
    M. Walter, M. Schutze, and A. Rahmel, Oxidation of Metals 40, 37 (1993).CrossRefGoogle Scholar
  17. 17.
    A. P. Grosvenor, M. C. Biesinger, R. S. C. Smart,and N. S. McIntyre, Surface Science 600, 1771 (2006).CrossRefGoogle Scholar
  18. 18.
    B. P. Payne, A. P. Grosvenor, M. C. Biesinger, B. A. Kobe, and N. S. McIntyre, Surface and Interface Analysis 39, 582 (2007).CrossRefGoogle Scholar
  19. 19.
    M. C. Biesinger, C. Brown, J. R. Mycroft, R. D. Davidson, and N. S. McIntyre, Surface and Interface Analysis 36, 1550 (2004).CrossRefGoogle Scholar
  20. 20.
    A. P. Grosvenor, B. A. Kobe, and N. S. McIntyre, Surface Science 572, 217 (2004).CrossRefGoogle Scholar
  21. 21.
    A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, and N. S. McIntyre, Surface and Interface Analysis 36, 1564 (2004).CrossRefGoogle Scholar
  22. 22.
    A. C. Lloyd, J. J. Noël, N. S. McIntyre, and D. W. Shoesmith, Electrochimica Acta 49, 3015 (2004).CrossRefGoogle Scholar
  23. 23.
    B. Strohmeier, Surface and Interface Analysis 15, 51 (1990).CrossRefGoogle Scholar
  24. 24.
    CasaXPS Software, Version 2.3.15 (c) (Casa Software Ltd).Google Scholar
  25. 25.
    D. A. Shirley, Physical Review B 55, 4709 (1972).CrossRefGoogle Scholar
  26. 26.
    R. P. Gupta and S. K. Sen, Physical Review B10, 71 (1974).Google Scholar
  27. 27.
    B. M. Weckhuysen, L. M. De Ridder, P. J. Grobet, and R. A. Schoonheydt, Journal of Physical Chemistry 99, 320 (1995).CrossRefGoogle Scholar
  28. 28.
    B. P. Payne, P. Keech, and N. S. McIntyre, Corrosion Science (submitted).Google Scholar
  29. 29.
    M. C. Biesinger, B. P. Payne, A. Grosvenor, L. M. W. Lau, A. R. Gerson, and R St C Smart, Applied Surface Science 257, 2717 (2011).CrossRefGoogle Scholar
  30. 30.
    M. Aronniemi, J. Lahtinen, and P. Hautojarvi, Surface and Interface Analysis 36, 1004 (2004).CrossRefGoogle Scholar
  31. 31.
    R. Grau-Crespo, A. Y. Al-Baitai, I. Saadoune, and N. H. De Leeuw, Journal of Physics: Condensed Matter 22, 1 (2010).CrossRefGoogle Scholar
  32. 32.
    N. S. McIntyre, T. C. Chan, and C. Chen, Oxidation of Metals 33, 457 (1990).CrossRefGoogle Scholar
  33. 33.
    B. Chattopadhyay and G. C. Wood, Journal of the Electrochemical Society 117, 1163 (1970).CrossRefGoogle Scholar
  34. 34.
    J. S. Armijo, D. L. Douglass, and R. A. Huggins, Journal of the Electrochemical Society: Solid-State: Science and Technology 120, 825 (1973).Google Scholar
  35. 35.
    T. Yamaguchi and T. Kimura, Journal of the American Ceramics Society 59, 333 (1976).CrossRefGoogle Scholar
  36. 36.
    B. Gillot, J. Tyronomicz, and A. Roussett, Journal of Materials Research Bulletin 10, 775 (1975).CrossRefGoogle Scholar
  37. 37.
    B. Payne and N. S. McIntyre, Journal of Electron Spectroscopy and Related Phenomena 175, 155 (2009).CrossRefGoogle Scholar
  38. 38.
    Z. Zeng, K. Natesan, and V. A. Marconi, Oxidation of Metals 58, 147 (2002).CrossRefGoogle Scholar
  39. 39.
    M. Walter, M. Schutze, and A. Rahmel, Oxidation of Metals 40, 37 (1993).CrossRefGoogle Scholar
  40. 40.
    I. G. Crouch and J. C. Scully, Oxidation of Metals 15, 101 (1981).CrossRefGoogle Scholar
  41. 41.
    K. Kuroda, P. A. Labun, G. Welsch, and T. E. Mitchell, Oxidation of Metals 19, 117 (1983).CrossRefGoogle Scholar
  42. 42.
    N. Cabrera and N. F. Mott, Reports on Progress in Physics 12, 163 (1948–1949).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of ChemistryThe University of Western OntarioLondonCanada
  2. 2.Royal Military CollegeKingstonCanada

Personalised recommendations