Oxidation of Metals

, Volume 78, Issue 3–4, pp 153–165 | Cite as

Cyclic Corrosion Behavior of Ni-Based Superalloys in Hot Lithium Molten Salt

Original Paper


In this study, the cyclic corrosion behavior of N06230, N07263, and N06625 in a LiCl–Li2O molten salt was investigated at 650 °C in argon atmosphere. The cyclic corrosion behavior was observed through measurements of the oxide morphology and thickness, the extent of internal corrosion, and compositional changes in the oxide scale and the substrate. The corrosion products in the surface corrosion layers of N07263 were (Ni,Co)O, (Ni,Co)Cr2O4, Cr2O3, and TiO2 and those in the surface corrosion layers of N06230 were NiO, NiCr2O4, and Cr2O3, while NiO, NiCr2O4, CrNbO4, and Cr2O3 were identified as the corrosion products of N06625. The internal corrosion behavior of N07263 was localized, while N06230 and N06625 showed uniform corrosion. N07263 exhibited superior corrosion resistance as its corrosion layer was more continuous, dense, and adherent as compared to those of N06230 and N06625.


Hot corrosion Lithium molten salt Electrolytic reduction Structural material 



This work was funded by the National Mid- and Long-term Atomic Energy R&D Program supported by the Ministry of Education, Science and Technology of Korea.


  1. 1.
    M. Galopin and J. S. Daniel, Electrodeposition and Surface Treatment 3, 1 (1975).CrossRefGoogle Scholar
  2. 2.
    O. Oren, Vacuum 21, 331 (1971).CrossRefGoogle Scholar
  3. 3.
    P. C. Hsu, K. G. Foster, T. D. Ford, P. H. Wallman, B. E. Watkins, C. O. Pruneda and M. G. Adamson, Waste Management 20, 363 (2000).CrossRefGoogle Scholar
  4. 4.
    H. S. Ray, Introduction to Melts—Molten Salts, Slags & Glasses, (Allied Publishers Pvt. Ltd., New Delhi, 2006).Google Scholar
  5. 5.
    M. A. Uusitalo, P. M. J. Vuoristo and T. A. Mantyla, Corrosion Science 46, 1311 (2004).CrossRefGoogle Scholar
  6. 6.
    J.G. Gonzalez, S. Haro, A. Martinez–Villafane, V.M. Salinas-Bravo, and J. Porcayo–Calderon, Materials Science and Engineering A 258, 435 (2006).Google Scholar
  7. 7.
    B. P. Mohanty and D. A. Shores, Corrosion Science 46, 2893 (2004).CrossRefGoogle Scholar
  8. 8.
    A. Ruh and M. Spiegel, Corrosion Science 48, 679 (2006).CrossRefGoogle Scholar
  9. 9.
    Tz Tzvetkoff and J. Kolchakov, Materials Chemistry and Physics 87, 201 (2004).CrossRefGoogle Scholar
  10. 10.
    S. Mitsushima, N. Kamiya and K. I. Ota, Journal of The Electrochemical Society 137, 2713 (1990).CrossRefGoogle Scholar
  11. 11.
    R. A. Rapp, Corrosion Science 44, 209 (2006).CrossRefGoogle Scholar
  12. 12.
    B. Zhu and G. Lindbergh, Electrochimica Acta 46, 2593 (2001).CrossRefGoogle Scholar
  13. 13.
    M. Spiegel, P. Biedenkipf and H. J. Grabke, Corrosion Science 39, 1193 (1997).CrossRefGoogle Scholar
  14. 14.
    D. M. England and A. V. Virkar, Journal of The Electrochemical Society 148, A330 (2001).CrossRefGoogle Scholar
  15. 15.
    J. H. Chen, P. M. Rogers and J. A. Little, Oxidation of Metals 47, 381 (1997).CrossRefGoogle Scholar
  16. 16.
    F. A. Khalid and S. E. Benjamin, Oxidation of Metals 54, 63 (2000).CrossRefGoogle Scholar
  17. 17.
    F. Rabbani, L. P. Ward and K. N. Strafford, Oxidation of Metals 54, 139 (2000).CrossRefGoogle Scholar
  18. 18.
    B. R. Barnard, P. K. Liaw, R. A. Buchanan and D. L. Klarstrom, Materials Science and Engineering A 527, 3813 (2010).CrossRefGoogle Scholar
  19. 19.
    J. E. Indacochea, J. L. Smith, K. R. Litko, E. J. Karell and A. G. Raraz, Oxidation of Metals 55, 1 (2001).CrossRefGoogle Scholar
  20. 20.
    M. H. Guo, Q. M. Wang, P. L. Ke, J. Gong, C. Sun, R. F. Huang and L. S. Wen, Surface and Coatings Technology 200, 3942 (2006).CrossRefGoogle Scholar
  21. 21.
    H. Izuta and Y. Komura, Journal of the Japan Institute of Metals 58, 1196 (1994).Google Scholar
  22. 22.
    Y. Harada, Japan Thermal Spray Society 33, 128 (1996).Google Scholar
  23. 23.
    HSC Chemistry 6.12, Outotec Research Oy, Pori, Finland.Google Scholar
  24. 24.
    F. William, Smith, Structure and Properties of Engineering Alloys, 2nd edn, (McGraw-Hill, Inc, New York, 1993).Google Scholar
  25. 25.
    G. C. Wood, Corrosion Science 2, 173 (1962).CrossRefGoogle Scholar
  26. 26.
    G. H. Meier, Materials Science and Engineering A120, 1 (1989).Google Scholar
  27. 27.
    D. Caplan and M. Cohen, Corrosion 15, 141 (1959).Google Scholar
  28. 28.
    D. A. Jones, Principles and Prevention of Corrosion, (Macmillan Publishing Company, New York, 1992).Google Scholar
  29. 29.
    H. H. Davis, H. C. Graham and I. A. Krernes, Oxidation of Metals 3, 431 (1971).CrossRefGoogle Scholar
  30. 30.
    F. H. Stott, G. C. Wood, Y. Shida, D. P. Whittle and B. D. Bastow, Corrosion Science 21, 599 (1981).CrossRefGoogle Scholar
  31. 31.
    M. Skashita and N. Sato, Corrosion Science 17, 473 (1977).CrossRefGoogle Scholar
  32. 32.
    C. R. Crayton and Y. C. Lu, Corrosion Science 29, 7 (1989).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Korea Atomic Energy Research InstituteDaejeonKorea
  2. 2.Graduate School of Green Energy Technology and Department of Advanced Materials EngineeringChungnam National UniversityYuseong-guKorea

Personalised recommendations