Skip to main content
Log in

Cyclic Corrosion Behavior of Ni-Based Superalloys in Hot Lithium Molten Salt

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

In this study, the cyclic corrosion behavior of N06230, N07263, and N06625 in a LiCl–Li2O molten salt was investigated at 650 °C in argon atmosphere. The cyclic corrosion behavior was observed through measurements of the oxide morphology and thickness, the extent of internal corrosion, and compositional changes in the oxide scale and the substrate. The corrosion products in the surface corrosion layers of N07263 were (Ni,Co)O, (Ni,Co)Cr2O4, Cr2O3, and TiO2 and those in the surface corrosion layers of N06230 were NiO, NiCr2O4, and Cr2O3, while NiO, NiCr2O4, CrNbO4, and Cr2O3 were identified as the corrosion products of N06625. The internal corrosion behavior of N07263 was localized, while N06230 and N06625 showed uniform corrosion. N07263 exhibited superior corrosion resistance as its corrosion layer was more continuous, dense, and adherent as compared to those of N06230 and N06625.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Galopin and J. S. Daniel, Electrodeposition and Surface Treatment 3, 1 (1975).

    Article  CAS  Google Scholar 

  2. O. Oren, Vacuum 21, 331 (1971).

    Article  Google Scholar 

  3. P. C. Hsu, K. G. Foster, T. D. Ford, P. H. Wallman, B. E. Watkins, C. O. Pruneda and M. G. Adamson, Waste Management 20, 363 (2000).

    Article  CAS  Google Scholar 

  4. H. S. Ray, Introduction to Melts—Molten Salts, Slags & Glasses, (Allied Publishers Pvt. Ltd., New Delhi, 2006).

    Google Scholar 

  5. M. A. Uusitalo, P. M. J. Vuoristo and T. A. Mantyla, Corrosion Science 46, 1311 (2004).

    Article  CAS  Google Scholar 

  6. J.G. Gonzalez, S. Haro, A. Martinez–Villafane, V.M. Salinas-Bravo, and J. Porcayo–Calderon, Materials Science and Engineering A 258, 435 (2006).

    Google Scholar 

  7. B. P. Mohanty and D. A. Shores, Corrosion Science 46, 2893 (2004).

    Article  CAS  Google Scholar 

  8. A. Ruh and M. Spiegel, Corrosion Science 48, 679 (2006).

    Article  CAS  Google Scholar 

  9. Tz Tzvetkoff and J. Kolchakov, Materials Chemistry and Physics 87, 201 (2004).

    Article  CAS  Google Scholar 

  10. S. Mitsushima, N. Kamiya and K. I. Ota, Journal of The Electrochemical Society 137, 2713 (1990).

    Article  CAS  Google Scholar 

  11. R. A. Rapp, Corrosion Science 44, 209 (2006).

    Article  Google Scholar 

  12. B. Zhu and G. Lindbergh, Electrochimica Acta 46, 2593 (2001).

    Article  CAS  Google Scholar 

  13. M. Spiegel, P. Biedenkipf and H. J. Grabke, Corrosion Science 39, 1193 (1997).

    Article  CAS  Google Scholar 

  14. D. M. England and A. V. Virkar, Journal of The Electrochemical Society 148, A330 (2001).

    Article  CAS  Google Scholar 

  15. J. H. Chen, P. M. Rogers and J. A. Little, Oxidation of Metals 47, 381 (1997).

    Article  CAS  Google Scholar 

  16. F. A. Khalid and S. E. Benjamin, Oxidation of Metals 54, 63 (2000).

    Article  CAS  Google Scholar 

  17. F. Rabbani, L. P. Ward and K. N. Strafford, Oxidation of Metals 54, 139 (2000).

    Article  CAS  Google Scholar 

  18. B. R. Barnard, P. K. Liaw, R. A. Buchanan and D. L. Klarstrom, Materials Science and Engineering A 527, 3813 (2010).

    Article  Google Scholar 

  19. J. E. Indacochea, J. L. Smith, K. R. Litko, E. J. Karell and A. G. Raraz, Oxidation of Metals 55, 1 (2001).

    Article  CAS  Google Scholar 

  20. M. H. Guo, Q. M. Wang, P. L. Ke, J. Gong, C. Sun, R. F. Huang and L. S. Wen, Surface and Coatings Technology 200, 3942 (2006).

    Article  CAS  Google Scholar 

  21. H. Izuta and Y. Komura, Journal of the Japan Institute of Metals 58, 1196 (1994).

    CAS  Google Scholar 

  22. Y. Harada, Japan Thermal Spray Society 33, 128 (1996).

    CAS  Google Scholar 

  23. HSC Chemistry 6.12, Outotec Research Oy, Pori, Finland.

  24. F. William, Smith, Structure and Properties of Engineering Alloys, 2nd edn, (McGraw-Hill, Inc, New York, 1993).

    Google Scholar 

  25. G. C. Wood, Corrosion Science 2, 173 (1962).

    Article  CAS  Google Scholar 

  26. G. H. Meier, Materials Science and Engineering A120, 1 (1989).

    Google Scholar 

  27. D. Caplan and M. Cohen, Corrosion 15, 141 (1959).

    Google Scholar 

  28. D. A. Jones, Principles and Prevention of Corrosion, (Macmillan Publishing Company, New York, 1992).

    Google Scholar 

  29. H. H. Davis, H. C. Graham and I. A. Krernes, Oxidation of Metals 3, 431 (1971).

    Article  CAS  Google Scholar 

  30. F. H. Stott, G. C. Wood, Y. Shida, D. P. Whittle and B. D. Bastow, Corrosion Science 21, 599 (1981).

    Article  CAS  Google Scholar 

  31. M. Skashita and N. Sato, Corrosion Science 17, 473 (1977).

    Article  Google Scholar 

  32. C. R. Crayton and Y. C. Lu, Corrosion Science 29, 7 (1989).

    Google Scholar 

Download references

Acknowledgments

This work was funded by the National Mid- and Long-term Atomic Energy R&D Program supported by the Ministry of Education, Science and Technology of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soo-Haeng Cho or Jong-Hyeon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, SH., Park, SB., Lee, JH. et al. Cyclic Corrosion Behavior of Ni-Based Superalloys in Hot Lithium Molten Salt. Oxid Met 78, 153–165 (2012). https://doi.org/10.1007/s11085-012-9297-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9297-3

Keywords

Navigation