Advertisement

Oxidation of Metals

, Volume 78, Issue 1–2, pp 51–61 | Cite as

Effect of Water Vapor on the High-Temperature Oxidation of Pure Ni

  • M. Auchi
  • S. Hayashi
  • K. Toyota
  • S. Ukai
Original Paper

Abstract

The high-temperature oxidation behavior of pure Ni in air and Ar with and without 30 vol%H2O at 1,000 °C was investigated to understand the effects of water–vapor on the resulting oxidation kinetics and scale structures. It was found that water–vapor significantly affected the morphology and scale structure of NiO. A duplex NiO scale with a powder-like outer and dense inner NiO layer developed when the Ni was oxidized in atmospheres containing water–vapor. The grain size of the dense inner NiO layer was much smaller than that formed in dry atmospheres. The growth of the powder-like NiO required outward diffusion of Ni and its continued formation occurred at the interface between the powder and dense NiO layers. The dense inner NiO layer grew outward and incorporated the powder-like NiO particles and the resulting grain size of the inner layer was smaller in the presence of water–vapor. The water–vapor is speculated to have prevented sintering of NiO particles during growth of the NiO scale.

Keywords

Ni oxidation Water vapor NiO scale Oxide morphology Duplex scale Kinetics 

References

  1. 1.
    E. Essuman, G. H. Meier, J. Żurek, M. Hänsel and W. J. Quadakkers, Oxidation of Metals 69, 143 (2008).CrossRefGoogle Scholar
  2. 2.
    N. K. Othman, J. Zhang and D. J. Young, Oxidation of Metals 73, 337 (2009).CrossRefGoogle Scholar
  3. 3.
    S. Hayashi and T. Narita, Oxidation of Metals 58, 319 (2002).CrossRefGoogle Scholar
  4. 4.
    B. A. Pint, J. A. Haynes, Y. Zhang, K. L. More and I. G. Wright, Surface and Coatings Technology 201, 3852 (2006).CrossRefGoogle Scholar
  5. 5.
    E. Essuman, G. H. Meier, J. Zurek, M. Hänsel, T. Norby, L. Singheiser and W. J. Quadakkers, Corrosion Science 50, 1753 (2008).CrossRefGoogle Scholar
  6. 6.
    J. Baud, A. Ferrier, J. Manence and J. Benerd, Oxidation of Metals 9, 69 (1975).CrossRefGoogle Scholar
  7. 7.
    M. Fukumoto, S. Maeda, S. Hayashi and T. Narita, Tetsu-To-Hagane 86, 526 (2000).Google Scholar
  8. 8.
    A. Rahmel and J. Tobolski, Corrosion Science 5, 815 (1965).CrossRefGoogle Scholar
  9. 9.
    A. Galerie, Y. Wouters and M. Caillet, Materials Science Forum 369–372, 231 (2001).CrossRefGoogle Scholar
  10. 10.
    J.-H. Ahn, B.-J. Kim, J.-G. Kim, H.-J. Kim, G.-W. Hong, H.-G. Lee, J.-M. Yoo and H. Pradeep, Physica C: Superconductivity 445–448, 620 (2006).CrossRefGoogle Scholar
  11. 11.
    S. Hayashi, S. Narita and T. Narita, Oxidation of Metals 74, 33 (2010).CrossRefGoogle Scholar
  12. 12.
    R. Peraldi, D. Monceau and B. Pieraggi, Oxidation of Metals 58, 249 (2002).CrossRefGoogle Scholar
  13. 13.
    R. Peraldi, D. Monceau and B. Pieraggi, Oxidation of Metals 58, 275 (2002).CrossRefGoogle Scholar
  14. 14.
    F. Morin, L. C. Dufour and G. Trudel, Oxidation of Metals 37, 39 (1992).CrossRefGoogle Scholar
  15. 15.
    J. A. Varela, and O. J. Whittemore, Sintering-Theory and Practice (1982), p. 439.Google Scholar
  16. 16.
    K. Akiba, U. Mitsutoshi, K. Kenichi and M. Toshio, Materials Transactions 48, 2753 (2007).CrossRefGoogle Scholar
  17. 17.
    T. Maruyama, S. Yasutoshi, M. Takuo and A. Tadaaki, Journal of the Electrochemical Society 134, 2915 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.HokkaidoJapan

Personalised recommendations