Skip to main content
Log in

A Simple Expression for Predicting the Oxidation Limited Life of Thin Components Manufactured from FCC High Temperature Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Chromia and alumina forming high temperature alloys suffer from breakaway oxidation if the concentration of the preferred scale forming element in the alloy decreases below the level required to sustain growth of the protective oxide scale. In thin components, the breakaway may occur even before oxide spallation starts to contribute to alloy depletion. In the present paper a simplified method is developed to predict the time to breakaway as a function of oxidation rate, initial concentration and diffusivity of the scale forming element in the alloy as well as component thickness. The first approach used is an approximation of the analytical solution previously derived by Whittle. The second method is based on a numerical solution and an exploration of the way in which the time to breakaway varies with the above mentioned parameters. Comparison with literature data reveals that for a number of applications good agreement between calculated and measured lifetimes can be achieved using both approaches. The lifetime equation derived using the numerical approach has the advantage that it allows prediction of breakaway oxidation in a larger range of experimental and alloy composition related parameters. It not only describes the behaviour of materials with a face centered cubic lattice but also includes the limiting case in which solute diffusion is fast compared to surface recession rate, as in, for example, the oxidation of ferritic alumina forming FeCrAl alloys at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. J. Young, High Temperature Oxidation and Corrosion of Metals (Elsevier, Oxford, 2008).

    Google Scholar 

  2. H. E. Evans, A. T. Donaldson, and T. C. Gilmour, Oxidation of Metals 52, 379 (1999).

    Article  CAS  Google Scholar 

  3. I. E. Anderson, B. K. Lograsso, R. Terpstra, and B. Gleeson, in Powder Metallurgy Alloys and Particulate Materials for Industrial Applications, eds. D. E. Alman and J. W. Newkirk (TMS, Warrandale, 2000), p. 11.

    Google Scholar 

  4. H. Choe and D. C. Dunand, Materials Science and Engineering A 384, 184 (2004).

    Google Scholar 

  5. A. Chyrkin, S. L. Schulze, J. Piron-Abellan, W. Bleck, L. Singheiser, and W. J. Quadakkers, Advanced Engineering Materials 9, 873 (2010).

    Article  Google Scholar 

  6. W. J. Quadakkers and K. Bongartz, Werkstoffe und Korrosion 45, 232 (1994).

    Article  CAS  Google Scholar 

  7. P. Huczkowski, N. Christiansen, V. Shemet, J. Piron-Abellan, L. Singheiser, and W. J. Quadakkers, Materials and Corrosion 55, 825 (2004).

    Article  CAS  Google Scholar 

  8. P. Huczkowski, N. Christiansen, V. Shemet, J. Piron-Abellan, L. Singheiser, and W. J. Quadakkers, Journal of Fuel Cell Science and Technology 1, 30 (2004).

    Article  CAS  Google Scholar 

  9. J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford, 1956).

    Google Scholar 

  10. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959).

    Google Scholar 

  11. D. P. Whittle, Corrosion Science 12, 869 (1972).

    Article  CAS  Google Scholar 

  12. C. Wagner, Journal of the Electrochemical Society 103, 571 (1956).

    Article  CAS  Google Scholar 

  13. H. C. Cowen and S. J. Webster, Corrosion of Steels in CO 2 (British Nuclear Energy Society, London, 1974), p. 349.

    Google Scholar 

  14. C. Wagner, Journal of the Electrochemical Society 99, 369 (1952).

    Article  CAS  Google Scholar 

  15. C. Wagner, Zeitscrift für Elektrochemie 63, 772 (1959).

    CAS  Google Scholar 

  16. R. Bauer, M. Baccalaro, L. P. H. Jeurgens, M. Pohl, and E. J. Mittemeijer, Oxidation of Metals 69, 265 (2008).

    Article  CAS  Google Scholar 

  17. H. E. Evans and A. T. Donaldson, Oxidation of Metals 50, 457 (1998).

    Article  CAS  Google Scholar 

  18. W. J. Quadakkers and M. J. Bennett, Materials Science and Technology 10, 126 (1994).

    Article  CAS  Google Scholar 

  19. B. A. Pint, L. R. Walker, and I. G. Wright, Materials at High Temperatures 26, 211 (2009).

    Article  CAS  Google Scholar 

  20. P. Huczkowski and W. J. Quadakkers, Report Forschungszentrum Jülich, Energy Technology, IEF-2 (Jülich, FRG, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chyrkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, D.J., Chyrkin, A. & Quadakkers, W.J. A Simple Expression for Predicting the Oxidation Limited Life of Thin Components Manufactured from FCC High Temperature Alloys. Oxid Met 77, 253–264 (2012). https://doi.org/10.1007/s11085-012-9283-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9283-9

Keywords

Navigation