Oxidation of Metals

, Volume 77, Issue 5–6, pp 237–251 | Cite as

Phase Transformation Behavior of Al2O3 Scale Formed on Pt-Modified γ′-Ni3Al-Based Alloys With and Without Hf Addition

Original Paper


The allotropic phase transformation behavior of Al2O3 scale formed on Ni–22Al–30Pt (in at.%) with and without 0.5Hf was investigated during short-term (i.e., 3 min dwell) cyclic oxidation at 1,150 °C in air. Hafnium addition did not appear to affect the oxidation rate in the early oxidation cycles, but it did delay the phase transformation from the metastable θ-Al2O3 structure to the stable α-Al2O3. Small dimples, which corresponded to α-Al2O3 grains, started to form on the Hf-free alloy after only three oxidation cycles; whereas, no apparent morphological change of the oxide scale surface was observed on the Hf-modified alloy. The transformation to α-Al2O3 was found to initiate at scale/alloy interface on the Hf-free alloy, but it initiated at gas/scale interface on the Hf-modified alloy. Depth profiling using glow discharge optical emission spectroscopy revealed that Hf enriched at the scale/alloy interface due to Hf rejection associated with the formation of an Al-depleted γ-layer, which has a low Hf solubility. Higher positive strain energy due to Hf solution in the metastable Al2O3 was inferred to be the main contributor to the delayed the transformation.


Hf effect Al2O3 phase transformation Grain growth Short-term kinetics 



Partial support for this work was provided by the Office of Naval Research, contract number N000140911127, with Dr. David Shifler being the Program Manager.


  1. 1.
    D. B. Lee, H. Habazaki, A. Kawashima, and K. Hashimoto, Corrosion Science 42, 721 (2000).CrossRefGoogle Scholar
  2. 2.
    J. L. Smialek and R. Gibala, Metallurgical and Materials Transactions A 14A, 2143 (1983).Google Scholar
  3. 3.
    G. G. Rybicki and J. L. Smialek, Oxidation of Metals 31, 275 (1989).CrossRefGoogle Scholar
  4. 4.
    M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1677 (1992).CrossRefGoogle Scholar
  5. 5.
    J. Stringer, Materials Science and Engineering A120, 129 (1989).Google Scholar
  6. 6.
    R. Prescott and M. J. Graham, Oxidation of Metals 38, 233 (1992).CrossRefGoogle Scholar
  7. 7.
    S. Mrowec, J. Jedlinski, and A. Gil, Materials Science and Engineering A120, 169 (1989).Google Scholar
  8. 8.
    D. P. Moon, Materials Science and Technology 5, 754 (1989).CrossRefGoogle Scholar
  9. 9.
    D. P. Whittle and J. Stringer, Philosophical Transactions of the Royal Society London A 295, 309 (1980).CrossRefGoogle Scholar
  10. 10.
    J. Jedlinski, Corrosion Science 35, 863 (1993).CrossRefGoogle Scholar
  11. 11.
    B. A. Pint, J. R. Martin, and L. W. Hobbs, Solid State Ionics 78, 99 (1995).CrossRefGoogle Scholar
  12. 12.
    P. A. van Manen, E. W. A. Young, D. Schalkoard, C. J. Van der Wekken, and J. H. W. de Wit, Surface and Interface Analysis 12, 391 (1988).CrossRefGoogle Scholar
  13. 13.
    J. Jedliński, Oxidation of Metals 39, 55 (1993).CrossRefGoogle Scholar
  14. 14.
    R. Cueff, H. Buscail, E. Caudron, C. Issartel, and F. Riffard, Corrosion Science 45, 1815 (2003).CrossRefGoogle Scholar
  15. 15.
    I. Rommerskirchen and V. Kolarik, Materials and Corrosion 47, 625 (1996).CrossRefGoogle Scholar
  16. 16.
    D. Toma, W. Brandl, and U. Köster, Surface and Coatings Technology 120–121, 8 (1999).CrossRefGoogle Scholar
  17. 17.
    S. Hayashi and B. Gleeson, Oxidation of Metals 71, 5 (2009).CrossRefGoogle Scholar
  18. 18.
    P. Burtin, J. P. Brunelle, M. Pijolat, and M. Soustelle, Applied Catalysis 34, 225 (1987).CrossRefGoogle Scholar
  19. 19.
    P. Burtin, J. P. Brunelle, M. Pijolat, and M. Soustelle, Applied Catalysis 34, 239 (1987).CrossRefGoogle Scholar
  20. 20.
    M. Pijolat, M. Dauzat, and M. Soustelle, Thermochimica Acta 122, 71 (1987).CrossRefGoogle Scholar
  21. 21.
    J. C. Yang, E. Schumann, I. Levin, and M. Rühle, Acta Materialia 46, 2195 (1998).CrossRefGoogle Scholar
  22. 22.
    E. Schumann, G. Schnotz, K. P. Trumble, and M. Rühle, Acta Metallurgica et Materialia 40, 1311 (1992).CrossRefGoogle Scholar
  23. 23.
    H. Svensson, J. Angenete, and K. Stiller, Surface and Coatings Technology 177–178, 152 (2004).CrossRefGoogle Scholar
  24. 24.
    S. Taniguchi and A. Andoh, Oxidation of Metals 58, 545 (2002).CrossRefGoogle Scholar
  25. 25.
    P. Y. Hou, Annual Review of Materials Research 38, 275 (2008).CrossRefGoogle Scholar
  26. 26.
    X. F. Zhang, K. Thaidigsmann, J. Ager, and P. Y. Hou, Journal of Materials Research 21, 1409 (2006).CrossRefGoogle Scholar
  27. 27.
    J. Doychak and M. Rühle, Oxidation of Metals 31, 431 (1989).CrossRefGoogle Scholar
  28. 28.
    B. A. Pint, Oxidation of Metals 45, 1 (1997).CrossRefGoogle Scholar
  29. 29.
    R. D. Shannon, Acta Crystallographica A32, 751 (1976).Google Scholar
  30. 30.
    R. R. Nagarajan, A. K. Jena, and R. K. Ray, Z Metallkd 88, 87 (1997).Google Scholar
  31. 31.
    C. Zhang, J. Zhu, Y. Yang, H.-B. Cao, F. Zhang, W.-S. Cao, and Y. A. Chang, Intermetellics 16, 139 (2008).CrossRefGoogle Scholar
  32. 32.
    N. Mu, T. Izumi, L. Zhang, and B. Gleeson, Proceedings to Superalloys 2008 (The Minerals, Metals and Materials Society, Warrendale, 2008), p. 629.Google Scholar
  33. 33.
    P. Y. Hou, A. P. Paulikas, and B. W. Veal, Materials Science Forum 522–523, 433 (2006).CrossRefGoogle Scholar
  34. 34.
    R. B. Bagwell, G. L. Messing, and P. R. Howell, Journal of Materials Science 36, 1833 (2001).CrossRefGoogle Scholar
  35. 35.
    D. A. Porter and K. E. Easterling, Phase Transformation in Metals and Alloys, 2nd ed (CRC press, UK, 1992).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Division of Materials Science and Engineering, Faculty of EngineeringHokkaido UniversitySapporoJapan
  2. 2.Department of Mechanical Engineering & Materials ScienceUniversity of PittsburghPittsburghUSA

Personalised recommendations