Advertisement

Oxidation of Metals

, Volume 77, Issue 5–6, pp 209–235 | Cite as

Oxidation Behaviour of Sanicro 25 (42Fe22Cr25NiWCuNbN) in O2/H2O Mixture at 600 °C

  • L. Intiso
  • L.-G. Johansson
  • S. Canovic
  • S. Bellini
  • J.-E. Svensson
  • M. Halvarsson
Original Paper

Abstract

The present study investigates oxidation at 600 °C of alloy Sanicro 25 (42Fe22Cr25NiWCuNbN) in dry and wet O2 environments. The exposure time was 1–168 h. The oxidized samples were analyzed by grazing incidence X-ray diffraction, glow discharge optical emission spectroscopy, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. Alloy Sanicro 25 showed protective oxidation behaviour under the present conditions. Initially, a thin and smooth corundum-type single layer base oxide formed, featuring a Cr-rich bottom part and a Fe-rich top. With time, double-layered oxide nodules form consisting of inward- and outward-growing parts. Below the oxide scale a 100–200 nm thick oxidation-affected zone formed in the alloy, which was depleted in Cr and enriched in Ni. In this region the chromium carbides and copper-rich particles present in the bulk alloy were dissolved. In O2 + H2O environment, chromium volatilized from the surface, causing the chromium content of the oxide to be lower than after oxidation in dry O2. However, under present experimental conditions, the Cr depletion of the scale was not enough to trigger accelerated corrosion of the alloy.

Keywords

Oxidation Water vapour effect Chromia evaporation Chromia former Sanicro 25 

References

  1. 1.
    P. Kofstad, High Temperature Corrosion (Elsevier Applied Science Publishers Ltd, London and New York, 1988).Google Scholar
  2. 2.
    M. Thiele, H. Teichmann, W. Schwartz, and W. J. Quaddakers, VGB Kraftwerkstechnik 77, 129 (1997).Google Scholar
  3. 3.
    S. R. J. Saunders and N. L. MecCartney, Materials Science Forum 522–523, 119 (2006).CrossRefGoogle Scholar
  4. 4.
    I. G. Wright and B. A. Pint, in Proceedings, NACE Corrosion 2002, Denver, CO, USA, April 8–11 (2002).Google Scholar
  5. 5.
    J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser, and W. J. Quadakkers, Corrosion Science 48, 3428 (2006).CrossRefGoogle Scholar
  6. 6.
    T. Norby, Journal de Physique 4, 99 (1993).Google Scholar
  7. 7.
    B. Tveten, G. Hultquist, and T. Norby, Oxidation of Metals 51, 221 (1999).CrossRefGoogle Scholar
  8. 8.
    A. Holt and P. Kofstad, Solid State Ionics 69, 137 (1994).CrossRefGoogle Scholar
  9. 9.
    S. Jianian, Z. Longjiang, and L. Tiefan, Oxidation of Metals 48, 347 (1997).CrossRefGoogle Scholar
  10. 10.
    C. A. Sterns, F. J. Kohl, and G. C. Frynerg, Journal of the Electrochemical Society 121, 945 (1974).CrossRefGoogle Scholar
  11. 11.
    J. R. C. S. Tedmon, Journal of The Electrochemical Society 113, 766 (1966).CrossRefGoogle Scholar
  12. 12.
    H. Asteman, J. E. Svensson, M. Norell, and L. G. Johansson, Oxidation of Metals 54, 11 (2000).CrossRefGoogle Scholar
  13. 13.
    T. Jonsson, S. Canovic, F. Liu, H. Asteman, J. E. Svensson, L. G. Johansson, and M. Halvarsson, Oxidation of Metals 66, 295 (2006).CrossRefGoogle Scholar
  14. 14.
    I. Panas, J. E. Svensson, H. Asteman, T. J. R. Johnson, and L. G. Johansson, Chemical Physics Letters 383, 549 (2004).CrossRefGoogle Scholar
  15. 15.
    B. B. Ebbinghaus, Combustion and Flame 93, 119 (1993).CrossRefGoogle Scholar
  16. 16.
    E. J. Opila, D. L. Myers, N. S. Jacobson, I. M. B. Nielsen, D. F. Johnson, J. K. Olminsky, and M. D. Allendorf, The Journal of Physical Chemistry A 111, 1971 (2007).CrossRefGoogle Scholar
  17. 17.
    G. R. Holcomb, in Chromia Evaporation in Advanced Ultra-Supercritical Steam Boilers and Turbines, Thermodynamics—Kinetics of Dynamic Systems, ed. J. C. M. Piraján. InTech (2011). ISBN: 978-953-307-627-0. http://www.intechopen.com/articles/show/title/chromia-evaporation-in-advanced-ultra-supercritical-steam-boilers-and-turbines.
  18. 18.
    G. R. Holcomb, Oxidation of Metals 69, 163 (2008).CrossRefGoogle Scholar
  19. 19.
    G. R. Holcomb, Journal of Electrochemical Society 156, C292 (2009).CrossRefGoogle Scholar
  20. 20.
    J. E. Tang, F. Liu, H. Asteman, J. E. Svensson, L. G. Johansson, and M. Halvarsson, Materials at High Temperature 24, 27 (2007).CrossRefGoogle Scholar
  21. 21.
    B. Pujilaksono, T. Jonsson, M. Halvarsson, I. Panas, J. E. Svensson, and L. G. Johansson, Oxidation of Metals 70, 163 (2008).CrossRefGoogle Scholar
  22. 22.
    T. Jonsson, B. Pujilaksono, S. Hallström, J. Ågren, J. E. Svensson, L. G. Johansson, and M. Halvarsson, Corrosion Science 51, 1914 (2009).CrossRefGoogle Scholar
  23. 23.
    N. Ramasubramanian, P. B. Sewell, and M. Cohen, Journal of the Electrochemical Society 115, 12 (1968).CrossRefGoogle Scholar
  24. 24.
    T. Jonsson, S. Canovic, F. Liu, H. Asteman, J. E. Svensson, L. G. Johansson, and M. Halvarsson, Materials at High Temperature 22, 231 (2005).CrossRefGoogle Scholar
  25. 25.
    F. Liu, J. E. Tang, T. Jonsson, S. Canovic, K. Segerdahl, J. E. Svensson, and M. Halvarsson, Oxidation of Metals 66, 295 (2006).CrossRefGoogle Scholar
  26. 26.
    B. Pujilaksono, T. Jonsson, H. Heidari, M. Halvarsson, J. E. Svensson, and L. G. Johansson, Oxidation of Metals 75, 183 (2011).CrossRefGoogle Scholar
  27. 27.
    H. Asteman, J. E. Svensson, and L. G. Johansson, Oxidation of Metals 57, 193 (2002).CrossRefGoogle Scholar
  28. 28.
    C. Pettersson, T. Jonsson, C. Proff, M. Halvarsson, J. E. Svensson, and L. G. Johansson, Oxidation of Metals 74, 93 (2010).CrossRefGoogle Scholar
  29. 29.
    H. Asteman, K. Segerdahl, J. E. Svensson, L. G. Johansson, M. Halvarsson, and J. E. Tang, Materials Science Forum 461–464, 775 (2004).CrossRefGoogle Scholar
  30. 30.
    D. J. Young and B. Gleeson, Corrosion Science 44, 345 (2002).CrossRefGoogle Scholar
  31. 31.
    S. N. Basu and G. J. Yurek, Oxidation of Metals 36, 281 (1991).CrossRefGoogle Scholar
  32. 32.
    F. H. Stott, G. C. Wood, and J. Stringer, Oxidation of Metals 44, 113 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • L. Intiso
    • 1
    • 2
  • L.-G. Johansson
    • 3
  • S. Canovic
    • 3
  • S. Bellini
    • 1
  • J.-E. Svensson
    • 3
  • M. Halvarsson
    • 2
  1. 1.Centro Sviluppo Materiali S.p.ARomeItaly
  2. 2.Department of Applied PhysicsChalmers University of TechnologyGöteborgSweden
  3. 3.High Temperature Corrosion CentreChalmers University of TechnologyGöteborgSweden

Personalised recommendations