Oxidation of Metals

, Volume 76, Issue 1–2, pp 43–55 | Cite as

Effects of Platinum on the Hot Corrosion Behavior of Hf-Modified γ′-Ni3Al + γ-Ni-Based Alloys

Original Paper


The establishment of a protective α-Al2O3 scale is critical for providing high temperature protection from oxidation and hot corrosion, thereby improving lifetimes of advanced gas turbine engine components. Recent work by our group has shown that a wide range of Pt + Hf-modified γ′-Ni3Al + γ-Ni alloy compositions form a very adherent and slow-growing Al2O3 scale and exhibit excellent oxidation resistance. The main thrust of the present study was to understand the effects of Pt addition on the Type I (900 °C) and Type II (705 °C) hot corrosion (HC) behavior of model Hf-modified γ′ + γ alloy compositions. The salt used to bring about hot corrosion was Na2SO4. It was found that the Type I HC resistance of γ′ + γ alloys improved with up to about 10 at.% Pt addition, but then decreased significantly with increasing Pt content up to 30 at.% (the maximum level studied); however, under Type II HC conditions the resistance of γ′ + γ alloys progressively improved with increasing Pt content up to 30 at.%. The effect of pre-oxidation on hot corrosion resistance was also examined, and the results indicated that pre-oxidation generally improved Type II HC resistance for the test duration studied.


γ′ + γ alloy Platinum effect Pre-oxidation Type I hot corrosion Type II hot corrosion 



We thank the Office of Naval Research for sponsoring this research under the contract N00014-04-1-0368, with Program Manager, Dr. Airan Perez.


  1. 1.
    F. S. Pettit and G. H. Meier, Superalloys 1984 (Metallurgical Society of AIME, Warrendale, 1984), p. 651.Google Scholar
  2. 2.
    C. Leyens, B. A. Pint, and I. G. Wright, Surface and Coatings Technology 133/134, 15 (2000).CrossRefGoogle Scholar
  3. 3.
    G. H. Meier and F. S. Pettit, Surface and Coatings Technology 39/40, 1 (1989).CrossRefGoogle Scholar
  4. 4.
    K. L. Luthra, Metallurgical Transactions 13A, 1843 (1982).Google Scholar
  5. 5.
    P. Deb, D. H. Boone, and R. Streiff, Journal of Vacuum Science and Technology A 3, 2578 (1985).CrossRefGoogle Scholar
  6. 6.
    R. Streiff and O. Cerclier, Surface and Coatings Technology 32, 111 (1987).CrossRefGoogle Scholar
  7. 7.
    G. R. Krishna, D. K. Das, V. Singh, and S. V. Joshi, Materials Science and Engineering A 251, 40 (1998).CrossRefGoogle Scholar
  8. 8.
    D. K. Das, V. Singh, and S. V. Joshi, JOM 52/1, 41 (2000).CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, W. Y. Lee, J. A. Haynes, I. G. Wright, B. A. Pint, K. M. Cooley, and P. K. Liaw, Metallurgical and Materials Transactions 30A, 2679 (1999).CrossRefGoogle Scholar
  10. 10.
    D. R. Coupland, C. W. Hall, and I. R. McGill, Platinum Metal Review 26, 186 (1982).Google Scholar
  11. 11.
    D. R. Coupland, I. R. McGill, C. W. Corti, and G. L. Selman, Environmental Degradation of High Temperature Materials 2, 26 (1980).Google Scholar
  12. 12.
    G. J. Tatlock and T. J. Hurd, Oxidation of Metals 22, 201 (1984).CrossRefGoogle Scholar
  13. 13.
    G. J. Tatlock and T. J. Hurd, Werkstoffe und Korrosion 41, 710 (1990).CrossRefGoogle Scholar
  14. 14.
    G. J. Tatlock and T. J. Hurd, Platinum Metals Review 31, 26 (1987).Google Scholar
  15. 15.
    E. J. Felten, Oxidation of Metals 10, 23 (1976).CrossRefGoogle Scholar
  16. 16.
    B. Gleeson, W. Wang, S. Hayashi, and D. Sordelet, Materials Science Forum 461–464, 213 (2004).CrossRefGoogle Scholar
  17. 17.
    N. S. Bornstein, JOM 48, 37 (1996).Google Scholar
  18. 18.
    T. Izumi and B. Gleeson, Materials Science Forum 522–523, 221 (2006).CrossRefGoogle Scholar
  19. 19.
    B. A. Pint, Surface and Coatings Technology 188–189, 71 (2004).CrossRefGoogle Scholar
  20. 20.
    V. Deodeshmukh and B. Gleeson, NACE Corrosion/2005 (Houston, TX, 2005), Paper No. 05446.Google Scholar
  21. 21.
    V. Deodeshmukh and B. Gleeson, NACE Corrosion/2006 (San Diego, CA, 2006), Paper No. 06476.Google Scholar
  22. 22.
    I. Barin, Thermochemical Data of Pure Substances, Vol. 1–2, 3rd edn. (Weinheim/VCH, New York, 1995).Google Scholar
  23. 23.
    E. Copland, Journal of Phase Equilibria and Diffusion 28, 38 (2007).CrossRefGoogle Scholar
  24. 24.
    Z. F. Gulyanitskaya, N. M. Pavlyuchenko, L. I. Blokhina, and G. N. Zviadadze, Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy 15-11, 1933 (1979).Google Scholar
  25. 25.
    P. Kofstad, High Temperature Corrosion, (Elsevier Applied Science, London, 1988).Google Scholar
  26. 26.
    K. P. Lillerud and P. Kofstad, Oxidation of Metals 21, 233 (1984).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringIowa State UniversityAmesUSA
  2. 2.Haynes InternationalKokomoUSA
  3. 3.Department of Mechanical Engineering & Materials ScienceUniversity of PittsburghPittsburghUSA

Personalised recommendations