Oxidation of Metals

, Volume 75, Issue 5–6, pp 281–295 | Cite as

Analysis of Deformed Oxide Layers Grown on Steel

  • Lucía Suárez
  • Pablo Rodríguez-Calvillo
  • Yvan Houbaert
  • Nelson F. Garza-Montes-de-Oca
  • Rafael Colás
Original Paper


The deformation of the oxide layer grown in ultra low carbon steel was studied by means of electron backscattered diffraction analyses. Samples of the steel were reheated for shorts periods of time at 1050 °C in a chamber designed to obtain thin scale layers before deforming them by plane strain compression at temperatures ranging from 650 to 1050 °C. Microstructural analyses showed that the oxide layer was made almost exclusively of wustite that is ductile when deformed above 900 °C. It is found that wustite develops texture components of the cube and rotated cube type while growing; these components rotate towards 〈201〉 {100} components once a certain degree of deformation is achieved. Undeformed ferrite close to the oxide layer shows weak 〈201〉 {100} components that rotate into weak rotated cube components when the substrate is deformed in the austenite range and to strong 〈554〉 {225} components when deformed in ferrite. Rolling trials carried out in an experimental mill showed similar trends.


Oxidation Deformation Steel Electron backscattered diffraction 



The authors thank the support provided by the Centre for Research in Metallurgy, Belgium, and the Fund for International Cooperation in Science and Technology European Union-Mexico (Fondo de Cooperación Internacional en Ciencia y Tecnología Unión EuropeaMéxico) FONCICYT, for the support to this work.


  1. 1.
    M. M. Wolf, Iron and Steelmaker 27, 63 (2000).CrossRefGoogle Scholar
  2. 2.
    M. M. Wolf, Iron and Steelmaker 27, 114 (2000).Google Scholar
  3. 3.
    R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 59, 433 (2003).CrossRefGoogle Scholar
  4. 4.
    K. Stanley, J. von Hoene, and R. T. Huntoon, Transactions ASM 43, 426 (1951).Google Scholar
  5. 5.
    F. Païdassi, Revue de Metallurgie 54, 569 (1957).Google Scholar
  6. 6.
    O. Kubaschewsky and B. E. Hopkins, Oxidation of Metals and Alloys (Butterworths, London, 1962).Google Scholar
  7. 7.
    N. Birks and A. Nicholson, Iron Steel Inst. Sp. Pub. 123 (Iron Steel Inst., London, 1970), p. 219.Google Scholar
  8. 8.
    K. W. Browne, J. Dryden, and M. Assefpour, in Recent Advances in Heat Transfer and Micro-Structure Modelling for Metal Processing, eds. R.-M. Guo and J. J. Too, MD-vol. 67 (ASME, New York, 1995), p. 187.Google Scholar
  9. 9.
    H. T. Abuluwefa, R. I. L. Guthrie, and F. Ajersch, Metallurgical and Materials Transactions A 28A, 1643 (1997).CrossRefGoogle Scholar
  10. 10.
    H. A. Wriedt, in Binary Alloy Phase Diagrams, vol. 2, 2nd edn., eds. T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak (ASM International, Metals Park, OH, 1990), p. 1739.Google Scholar
  11. 11.
    Y. Hidaka, T. Anraku, and N. Otsuka, Oxidation of Metals 59, 97 (2003).CrossRefGoogle Scholar
  12. 12.
    M. Kryzanowski, C. M. Sellars, and J. H. Beynon, Thermomechanical Processing: Mechanics, Microstructure and Control, eds. E. J. Palmiere, M. Mahfouf, and C. Pinna, (U. Sheffield, Sheffield, 2002), p. 94.Google Scholar
  13. 13.
    D. Filatov, O. Pawelski, and E. Rasp, Steel Research International 75, 20 (2004).Google Scholar
  14. 14.
    L. Suárez, Y. Houbaert, X. Vanden Eynde, and R. Colás, Corrosion Science 59, 309 (2009).CrossRefGoogle Scholar
  15. 15.
    R. Y. Chen and W. Y. D. Yuen, ISIJ International 45, 52 (2005).CrossRefGoogle Scholar
  16. 16.
    D. P. Burke and R. L. Higginson, Scripta Materialia 42, 277 (2000).CrossRefGoogle Scholar
  17. 17.
    B. Kim and J. A. Szpunar, Scripta Materialia 44, 2605 (2001).CrossRefGoogle Scholar
  18. 18.
    R. L. Higginson, B. Roebuck, and E. J. Palmiere, Scripta Materialia 47, 337 (2002).CrossRefGoogle Scholar
  19. 19.
    S. I. Wright, B. L. Adams, and K. Kunze, Metallurgical Transactions A 24A, 819 (1993).Google Scholar
  20. 20.
    F. J. Humphreys, Journal of Materials Science 36, 3833 (2001).CrossRefGoogle Scholar
  21. 21.
    H. J. Bunge, Texture Analysis in Materials Science (Butterworths, London, 1982).Google Scholar
  22. 22.
    R. K. Ray, J. J. Jonas, M. P. Butrón-Guillén, and J. Savoie, ISIJ International 34, 927 (1984).CrossRefGoogle Scholar
  23. 23.
    D. Duly, G. J. Baxter, H. R. Shercliff, J. A. Whiteman, C. M. Sellars, and M. F. Ashby, Acta Materialia 44, 2947 (1996).CrossRefGoogle Scholar
  24. 24.
    L. Suárez, Y. Houbaert, X. Vanden Eynde, and R. Colás, Oxidation of Metals 70, 137 (2008).CrossRefGoogle Scholar
  25. 25.
    A. Airod, H. Vandekinderen, J. Barros, R. Colás, and Y. Houbaert, Journal of Materials Processing Technology 134, 398 (2003).CrossRefGoogle Scholar
  26. 26.
    P. R. Calvillo, T. Ros-Yanez, D. Ruiz, R. Colás, and Y. Houbaert, Materials Science and Technology 22, 1105 (2006).CrossRefGoogle Scholar
  27. 27.
    L. Suárez, Y. Houbaert, X. Vanden Eynde, and R. Colás, Corrosion Science 59, 309 (2009).CrossRefGoogle Scholar
  28. 28.
    R. Colás, Modelling and Simulation in Materials Science and Engineering 3, 437 (1995).CrossRefGoogle Scholar
  29. 29.
    M. Torres and R. Colás, Journal of Materials Processing Technology 105, 258 (2000).CrossRefGoogle Scholar
  30. 30.
    L. Suárez, Growth and Deformation Behaviour of Oxide Scales on Steel, Ph.D. Thesis, University of Ghent, Belgium, 2007.Google Scholar
  31. 31.
    U. F. Kocks and H. Mecking, Acta Metallurgica 29, 1865 (1981).CrossRefGoogle Scholar
  32. 32.
    T. Sakai and J. J. Jonas, Acta Metallurgica 32, 189 (1984).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lucía Suárez
    • 1
    • 2
  • Pablo Rodríguez-Calvillo
    • 1
    • 2
  • Yvan Houbaert
    • 3
  • Nelson F. Garza-Montes-de-Oca
    • 4
    • 5
  • Rafael Colás
    • 4
    • 5
  1. 1.CTM—Technologic Centre, Materials Technology AreaBarcelonaSpain
  2. 2.Department of Materials Science and Metallurgical EngineeringUniversidad Politécnica de CataluñaBarcelonaSpain
  3. 3.Department of Materials Science and EngineeringUniversity of GhentGhentBelgium
  4. 4.Facultad de Ingeniería Mecánica y EléctricaUniversidad Autónoma de Nuevo LeónMonterreyMexico
  5. 5.Centro de Innovación, Investigación y Desarrollo en Ingeniería y TecnologíaUniversidad Autónoma de Nuevo LeónMonterreyMexico

Personalised recommendations