Oxidation of Metals

, Volume 75, Issue 3–4, pp 209–228 | Cite as

Cyclic Oxidation Behavior of IN 718 Superalloy in Air at High Temperatures

  • Kh. A. Al-hatab
  • M. A. Al-bukhaiti
  • U. Krupp
  • M. Kantehm
Original Paper


Ni-base superalloy IN 718 was cyclically oxidized in laboratory air at temperatures ranging from 750 to 950 °C for up to 12 cycles (14 h/cycle). The kinetic behaviour as well as the surface morphology, and the oxide phases of the scales were characterized by means of weight gain measurements, cyclic oxidation kinetics, scanning electron microscopy equipped with energy dispersive spectroscopy (SEM-EDS), and X-ray diffraction (XRD) analysis techniques. The results showed that as the oxidation temperature increased, the oxidation rate, the external scale thickness, and internal oxidation zone increased. It was suggested that the oxidation rate was controlled by the diffusion of substrate elements in the alloy and the inward diffusion of oxygen through the oxide scale. The oxidation kinetics followed a sub-parabolic rate law and, the activation energy of oxidation was 249 ± 20 kJ mol−1. The scaling process was controlled mainly by the diffusion of chromium, titanium, manganese, and oxygen ions through the chromia scale. IN 718 showed low weight gain and very slow reaction rates of substrate elements at 750 °C. At 850 °C, a continuous and very thin oxide scale was formed. At 950 °C, XRD and EDS-elemental mapping analysis revealed that a complex oxide scale had formed. It consisted of an outermost layer of TiO2–MnCr2O4 spinels, inner layer of Cr2O3, and the inner most layer composed of Ni3Nb enriched with Nb, Ti and Al oxides underneath the chromia layer. The oxide scale at this temperature seemed to be thicker layer, significant spallation and volatilization had apparently occurred, and greater internal corrosion was identified. The doping effect of titanium was observed, where it was found to be diffused through the chromia scale to form TiO2 at the oxide-gas interface as well as internally and at the oxide alloy interface. The amount of rutile (TiO2) at the oxide surface increased with temperature. In view of Mn contents in the alloy, the manganese–chromium spinel oxide was inferred to have played an important role in cyclic oxidation behaviour of IN 718, where the change in oxidation kinetic was noted. The Al contents would cause internal Al-rich oxide formation at grain boundaries.


Cyclic oxidation IN 718 superalloy Parabolic rate Activation energy Doping Spinel 



The work has been funded to a large extent by German Academic Exchange Service (Deutscher Akademisher Austaausch DAAD) under code number: A/09/08208, which is gratefully acknowledged by the authors. Mr. H.-G. Kleinheider (Metallographic examinations), Mrs. K. Mey (SEM & XRD analysis) are thanked for the Characterization work. Dr. U. Krupp, Mr. M. Kantehm, and Mr. A.Giertler are thanked for their support as well as all the staff of the Mechanical Engineering Department-University of Applied Science.


  1. 1.
    M. S. Pampana, MSc. Thesis, Louisiana State University and Agricultural and Mechanical College, August 2004.Google Scholar
  2. 2. Accessed 2001.
  3. 3.
    X. S. Xie, J. X. Dong and M. C. Zhang, Materials Science Forum 539–543, 262 (2007).CrossRefGoogle Scholar
  4. 4.
    Il. Ho Kim and S. I. Kwun, Materials Science Forum 486–487, 109 (2005).CrossRefGoogle Scholar
  5. 5.
    H. Park, H. Kim, Y. Huh, M. Kim, S. Park, J. Koo and C. Seok, Key Engineering Materials 353–358, 523 (2007).CrossRefGoogle Scholar
  6. 6.
    L. Zhou, Computational Materials Science 7(3), 336 (1997).CrossRefGoogle Scholar
  7. 7.
    S. Gossé, T. Alpettaz, S. Chatain and C. Guéneau, Journal of Engineering for Gas Turbines and Power 131, 062901 (2009).CrossRefGoogle Scholar
  8. 8.
    J. Zurek, D. J. Young, E. Essuman, M. Hänsel, H. J. Penkalla, L. Niewolak and W. J. Quadakkers, Materials Science and Engineering A 477, 259 (2008).CrossRefGoogle Scholar
  9. 9.
    F. J. Perez, M. J. Cristobal, M. P. Hierro and F. Pedraza, Surface and Coatings Technology 120–121, 442 (1999).CrossRefGoogle Scholar
  10. 10.
    G. R. Holcomb and D. E. Alman, Scripta Materialia 54, 1821 (2006).CrossRefGoogle Scholar
  11. 11.
    M. P. Brady, W. J. Brindley, J. L. Smialek and I. E. Locci, Journal of Meterology 48, 46 (1996).Google Scholar
  12. 12.
    I. C. I. Okafor and R. G. Reddy, Journal of Meterology 51, 35 (1999).Google Scholar
  13. 13.
    S. Chevalier, G. Bonnet, K. Przybylski, J. C. Colson and J. P. Larpin, Oxidation of Metals 54, 527 (2000).CrossRefGoogle Scholar
  14. 14.
    S. Taniguchi, Y. Shibata and A. Murakami, Oxidation of Metals 41, 103 (1994).CrossRefGoogle Scholar
  15. 15.
    H. Kawaura, H. Kawahara, K. Nishino and T. Saito, Materials Science and Engineering A329, 589 (2002).Google Scholar
  16. 16.
    V. B. Trindade, U. Krupp, B. Z. Hangari, S. Yang and H. Christ, Materials Research 8, 371 (2005).Google Scholar
  17. 17.
    V. B. Trindade, U. Krupp, B. Z. Hangari, S. Yang, R. Borin and H. Christ, Materials Research 8, 365 (2005).Google Scholar
  18. 18.
    D. Caplan and M. Cohen, Corrosion Science 6, 321 (1966).CrossRefGoogle Scholar
  19. 19.
    C. Ostwald and H. J. Grabke, Corrosion Science 46, 1113 (2004).CrossRefGoogle Scholar
  20. 20.
    J. M. Rakowski, G. H. Meier and F. S. Pettit, Scripta Materialia 35, 1417 (1996).CrossRefGoogle Scholar
  21. 21.
    H. J. Grabke, E. M. Muller-Lorenz, S. Strauss, E. Pippel and J. Woltersdorf, Oxidation of Metals 50, 241 (1998).CrossRefGoogle Scholar
  22. 22.
    P. S. N. Stokes, F. H. Stott and G. C. Wood, Material Science and Engineering A 121, 549 (1989).CrossRefGoogle Scholar
  23. 23.
    A. Atkinson and R. I. Taylor, Philosophical Magazine A 39, 581 (1979).CrossRefGoogle Scholar
  24. 24.
    F. A. Khalid and S. E. Benjamin, Electron Microscopy 2, 183 (1998).Google Scholar
  25. 25.
    T. L. Wolfsdorf, W. H. Bender and P. W. Voorhees, Acta Metallurgica 45, 2279 (1997).Google Scholar
  26. 26.
    G. A. Greene and C. C. Finfrock, Oxidation of Metals 55, 505 (2001).CrossRefGoogle Scholar
  27. 27.
    H. Singh, D. Puri, and S. Prakash, International Symposium of Research Students on Materials Science and Engineering, Chennai, India, December 20–22, 2004.Google Scholar
  28. 28.
    J. Huang, H. Fang, X. Fu, F. Huang, H. Wan, Q. Zhang, S. Deng and J. Zu, Oxidation of Metals 53, 273 (2000).CrossRefGoogle Scholar
  29. 29.
    F. Rabbani, L. P. Ward, and K. N. Strafford, Oxidation of Metals 54(1/2), 139 (2000).Google Scholar
  30. 30.
    P. Kofstad, High Temperature Corrosion, (Elsevier, London, 1988).Google Scholar
  31. 31.
    B. Pieraggi, Material Science and Engineering 88, 199 (1987).CrossRefGoogle Scholar
  32. 32.
    S. Esmaeili, C. C. Engler-Pinto Jr., B. Ilschner and F. Rézaï-Aria, Scripta Materialia 32, 1777 (1995).CrossRefGoogle Scholar
  33. 33.
    B. D. Prasad, S. N. Sankran, K. E. Wiedermann and D. E. Glass, Thin Solid Films 345, 255 (1999).CrossRefGoogle Scholar
  34. 34.
    B. Gleeson, and B. Li, Corrosion 2001, NACE International, Houston, TX, March 11–16, 2001.Google Scholar
  35. 35.
    F. Abe, H. Araki, M. Okada and H. Yoshida, Transactions of the Iron and Steel Institute of Japan 25, 424 (1985).Google Scholar
  36. 36.
    M. Shindo and T. Kondo, Tetsu-lo-Hagane 68, 1628 (1982).Google Scholar
  37. 37.
    H. Buscail, S. Perrier, and C. Josse, Materials and Corrosion, 2010 (61).Google Scholar
  38. 38.
    H. Buscail, S. El Messki, F. Riffard, S. Perrier, R. Cueff, E. Caudron and C. Issartel, Materials, Chemistry and Physics 111, 491 (2008).CrossRefGoogle Scholar
  39. 39.
    L. Kumar, R. Venkataramani, M. Sundaraman, P. Mukhopadhyay and S. P. Garg, Oxidation of Metals 45, 221 (1996).CrossRefGoogle Scholar
  40. 40.
    R. E. Lobnig, H. P. Schmidt, K. Hennesen and H. J. Grabke, Oxidation of Metals 37, 81 (1992).CrossRefGoogle Scholar
  41. 41.
    H. Buscail, S. El Messki, F. Riffard, S. Perrier, R. Cueff and C. Issartel, Journal of Materials Science 43, 6960 (2008).CrossRefGoogle Scholar
  42. 42.
    G. Ben Abderrazik, G. Moulin and M. Huntz, Oxidation of Metals 33, 191 (1990).CrossRefGoogle Scholar
  43. 43.
    T. Sun Jo, D. Kim and S. Kim, Metals and Materials International 14, 739 (2008).CrossRefGoogle Scholar
  44. 44.
    M. G. E. Cox, B. McEnany and V. D. Scott, Philosophical Magazine 26, 839 (1972).CrossRefGoogle Scholar
  45. 45.
    C. Berthier, J. M. Lameille, M. Lenglet, D. Abida, J. Lopitaux and E. Beucher, Materials Science Forum 251–254, 1997 (1997).Google Scholar
  46. 46.
    C. Berthier, J. M. Lameille, M. Lenglet, D. Abida, J. Lopitaux and E. Beucher, Materials Science Forum 89, 251 (1996).Google Scholar
  47. 47.
    L. Antoni and B. Baroux, Review Meteorology (Paris) 99, 177 (2002).Google Scholar
  48. 48.
    F. Rouillard, C. Cabet, K. Wolski and M. Pijolat, Oxidation of Metals 68, 133 (2007).CrossRefGoogle Scholar
  49. 49.
    D. M. England and A. V. Virkar, Journal of the Electrochemical Society 146, 3196 (1996).CrossRefGoogle Scholar
  50. 50.
    F. Riffard, H. Buscail, E. Caudron, R. Cueff, C. Issartel and S. Perrier, Corrosion Science 45, 2867 (2003).CrossRefGoogle Scholar
  51. 51.
    L. Jian, P. Jian, H. Bing and G. Xie, Journal of Power Sources 159, 641 (2006).CrossRefGoogle Scholar
  52. 52.
    N. Hussain, K. A. Shahid, I. H. Khan and S. Rahman, Oxidation of Metals 43, 363 (1995).CrossRefGoogle Scholar
  53. 53.
    A. M. Huntz, Journal of Physics III 5, 1729 (1995).Google Scholar
  54. 54.
    M. Landkof, A. V. Levy, D. H. Boone, R. Gray and E. Yaniv, Corrosion Science 41, 344 (1985).Google Scholar
  55. 55.
    C. S. Tedmon, Journal of Electrochemical Society 113, 766 (1966).CrossRefGoogle Scholar
  56. 56.
    E. N. _dah, M. P. Hierro, K. Borrero and F. J. Perez, Oxidation of Metals 68, 9 (2007).CrossRefGoogle Scholar
  57. 57.
    F. Delaunay, C. Berthier, M. Lenglet and J. Lameille, Mikrochimica Acta 132, 337 (2000).CrossRefGoogle Scholar
  58. 58.
    P. Elliot and A. F. Hampton, Oxidation of Metals 14, 449 (1980).CrossRefGoogle Scholar
  59. 59.
    D. Kim, C. Jang and W. Ryu, Oxidation of Metals 71, 271 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kh. A. Al-hatab
    • 1
  • M. A. Al-bukhaiti
    • 1
  • U. Krupp
    • 2
  • M. Kantehm
    • 2
  1. 1.Mechanical Engineering Department, Faculty of EngineeringSanaá UniversitySanaaYemen
  2. 2.Faculty of Engineering and Computer ScienceUniversity of Applied ScienceOsnabrückGermany

Personalised recommendations